haystack/README.md
Bilge Yücel 434beebfb1
feat: Change docker-compose.yml file (#3673)
* feat: Change `docker-compose.yml` file

* Add `volumes` to read from the local `/pipelines` folder
* Change the `PIPELINE_YAML_PATH` value and refer to the local `pipelines.haystack-pipeline.yml`
* Change the elasticsearch image

* Fix volume

* Update readme to direct users to the new demos repository
2023-01-03 11:49:12 +03:00

195 lines
13 KiB
Markdown

<p align="center">
<a href="https://www.deepset.ai/haystack/"><img src="https://raw.githubusercontent.com/deepset-ai/haystack/main/docs/img/haystack_logo_colored.png" alt="Haystack"></a>
</p>
<p>
<a href="https://github.com/deepset-ai/haystack/actions/workflows/tests.yml">
<img alt="Tests" src="https://github.com/deepset-ai/haystack/workflows/Tests/badge.svg?branch=main">
</a>
<a href="https://github.com/deepset-ai/haystack-json-schema/actions/workflows/schemas.yml">
<img alt="Schemas" src="https://github.com/deepset-ai/haystack-json-schema/actions/workflows/schemas.yml/badge.svg">
</a>
<a href="https://docs.haystack.deepset.ai">
<img alt="Documentation" src="https://img.shields.io/website?label=documentation&up_message=online&url=https%3A%2F%2Fdocs.haystack.deepset.ai">
</a>
<a href="https://app.fossa.com/projects/custom%2B24445%2Fgithub.com%2Fdeepset-ai%2Fhaystack?ref=badge_shield">
<img alt="FOSSA Status" src="https://app.fossa.com/api/projects/custom%2B24445%2Fgithub.com%2Fdeepset-ai%2Fhaystack.svg?type=shield"/>
</a>
<a href="https://github.com/deepset-ai/haystack/releases">
<img alt="Release" src="https://img.shields.io/github/release/deepset-ai/haystack">
</a>
<a href="https://github.com/deepset-ai/haystack/commits/main">
<img alt="Last commit" src="https://img.shields.io/github/last-commit/deepset-ai/haystack">
</a>
<a href="https://pepy.tech/project/farm-haystack">
<img alt="Downloads" src="https://pepy.tech/badge/farm-haystack/month">
</a>
<a href="https://www.deepset.ai/jobs">
<img alt="Jobs" src="https://img.shields.io/badge/Jobs-We're%20hiring-blue">
</a>
<a href="https://twitter.com/intent/follow?screen_name=deepset_ai">
<img alt="Twitter" src="https://img.shields.io/twitter/follow/deepset_ai?style=social">
</a>
</p>
[Haystack](https://haystack.deepset.ai) is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases.
Whether you want to perform Question Answering or semantic document search, you can use the State-of-the-Art NLP models in Haystack to provide unique search experiences and allow your users to query in natural language.
Haystack is built in a modular fashion so that you can combine the best technology from other open-source projects like Huggingface's Transformers, Elasticsearch, or Milvus.
<p align="center"><img src="https://raw.githubusercontent.com/deepset-ai/haystack/main/docs/img/main_example.gif"></p>
## What to build with Haystack
- **Ask questions in natural language** and find granular answers in your documents.
- Perform **semantic search** and retrieve documents according to meaning, not keywords
- Use **off-the-shelf models** or **fine-tune** them to your domain.
- Use **user feedback** to evaluate, benchmark, and continuously improve your live models.
- Leverage existing **knowledge bases** and better handle the long tail of queries that **chatbots** receive.
- **Automate processes** by automatically applying a list of questions to new documents and using the extracted answers.
## Core Features
- **Latest models**: Utilize all latest transformer-based models (e.g., BERT, RoBERTa, MiniLM) for extractive QA, generative QA, and document retrieval.
- **Modular**: Multiple choices to fit your tech stack and use case. Pick your favorite database, file converter, or modeling framework.
- **Pipelines**: The Node and Pipeline design of Haystack allows for custom routing of queries to only the relevant components.
- **Open**: 100% compatible with HuggingFace's model hub. Tight interfaces to other frameworks (e.g., Transformers, FARM, sentence-transformers)
- **Scalable**: Scale to millions of docs via retrievers, production-ready backends like Elasticsearch / FAISS, and a fastAPI REST API
- **End-to-End**: All tooling in one place: file conversion, cleaning, splitting, training, eval, inference, labeling, etc.
- **Developer friendly**: Easy to debug, extend and modify.
- **Customizable**: Fine-tune models to your domain or implement your custom DocumentStore.
- **Continuous Learning**: Collect new training data via user feedback in production & improve your models continuously
| | |
| --------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| :ledger: [Docs](https://docs.haystack.deepset.ai) | Components, Pipeline Nodes, Guides, API Reference |
| :floppy_disk: [Installation](https://github.com/deepset-ai/haystack#floppy_disk-installation) | How to install Haystack |
| :mortar_board: [Tutorials](https://github.com/deepset-ai/haystack#mortar_board-tutorials) | See what Haystack can do with our Notebooks & Scripts |
| :beginner: [Quick Demo](https://github.com/deepset-ai/haystack#beginner-quick-demo) | Deploy a Haystack application with Docker Compose and a REST API |
| :vulcan_salute: [Community](https://github.com/deepset-ai/haystack#vulcan_salute-community) | [Discord](https://haystack.deepset.ai/community/join), [Twitter](https://twitter.com/deepset_ai), [Stack Overflow](https://stackoverflow.com/questions/tagged/haystack), [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) |
| :heart: [Contributing](https://github.com/deepset-ai/haystack#heart-contributing) | We welcome all contributions! |
| :bar_chart: [Benchmarks](https://haystack.deepset.ai/benchmarks/) | Speed & Accuracy of Retriever, Readers and DocumentStores |
| :telescope: [Roadmap](https://haystack.deepset.ai/overview/roadmap) | Public roadmap of Haystack |
| :newspaper: [Blog](https://medium.com/deepset-ai) | Read our articles on Medium |
| :phone: [Jobs](https://www.deepset.ai/jobs) | We're hiring! Have a look at our open positions |
## :floppy_disk: Installation
**1. Basic Installation**
You can install a basic version of Haystack's latest release by using [pip](https://github.com/pypa/pip).
```
pip3 install farm-haystack
```
This command will install everything needed for basic Pipelines that use an Elasticsearch Document Store.
**2. Full Installation**
If you plan to be using more advanced features like Milvus, FAISS, Weaviate, OCR or Ray,
you will need to install a full version of Haystack.
The following command will install the latest version of Haystack from the main branch.
```
git clone https://github.com/deepset-ai/haystack.git
cd haystack
pip install --upgrade pip
pip install -e '.[all]' ## or 'all-gpu' for the GPU-enabled dependencies
```
If you cannot upgrade `pip` to version 21.3 or higher, you will need to replace:
- `'.[all]'` with `'.[sql,only-faiss,only-milvus,weaviate,graphdb,crawler,preprocessing,ocr,onnx,ray,dev]'`
- `'.[all-gpu]'` with `'.[sql,only-faiss-gpu,only-milvus,weaviate,graphdb,crawler,preprocessing,ocr,onnx-gpu,ray,dev]'`
For an complete list of the dependency groups available, have a look at the `haystack/pyproject.toml` file.
To install the REST API and UI, run the following from the root directory of the Haystack repo
```
pip install rest_api/
pip install ui/
```
**3. Installing on Windows**
```
pip install farm-haystack -f https://download.pytorch.org/whl/torch_stable.html
```
**4. Installing on Apple Silicon (M1)**
M1 Macbooks require some extra dependencies in order to install Haystack.
```
# some additional dependencies needed on m1 mac
brew install postgresql
brew install cmake
brew install rust
# haystack installation
GRPC_PYTHON_BUILD_SYSTEM_ZLIB=true pip install git+https://github.com/deepset-ai/haystack.git
```
**5. Learn More**
See our [installation guide](https://haystack.deepset.ai/overview/quick-start) for more options.
You can find out more about our PyPi package on our [PyPi page](https://pypi.org/project/farm-haystack/).
## :mortar_board: Tutorials
![image](https://raw.githubusercontent.com/deepset-ai/haystack/main/docs/img/concepts_haystack_handdrawn.png)
Follow our [introductory tutorial](https://haystack.deepset.ai/tutorials/first-qa-system)
to setup a question answering system using Python and start performing queries!
Explore [the rest of our tutorials](https://haystack.deepset.ai/tutorials)
to learn how to tweak pipelines, train models and perform evaluation.
## :beginner: Quick Demo
**Hosted**
Try out our hosted [Explore The World](https://haystack-demo.deepset.ai/) live demo here!
Ask any question on countries or capital cities and let Haystack return the answers to you.
**Local**
To run the Explore The World demo on your own machine and customize it to your needs, check out the instructions on [Explore the World repository](https://github.com/deepset-ai/haystack-demos/tree/main/explore_the_world) on GitHub.
## :vulcan_salute: Community
There is a very vibrant and active community around Haystack which we are regularly interacting with!
If you have a feature request or a bug report, feel free to open an [issue in Github](https://github.com/deepset-ai/haystack/issues).
We regularly check these and you can expect a quick response.
If you'd like to discuss a topic, or get more general advice on how to make Haystack work for your project,
you can start a thread in [Github Discussions](https://github.com/deepset-ai/haystack/discussions) or our [Discord channel](https://haystack.deepset.ai/community).
We also check [Twitter](https://twitter.com/deepset_ai) and [Stack Overflow](https://stackoverflow.com/questions/tagged/haystack).
## :heart: Contributing
We are very open to the community's contributions - be it a quick fix of a typo, or a completely new feature!
You don't need to be a Haystack expert to provide meaningful improvements.
To learn how to get started, check out our [Contributor Guidelines](https://github.com/deepset-ai/haystack/blob/main/CONTRIBUTING.md) first.
You can also find instructions to run the tests locally there.
Thanks so much to all those who have contributed to our project!
<a href="https://github.com/deepset-ai/haystack/graphs/contributors">
<img src="https://contrib.rocks/image?repo=deepset-ai/haystack" />
</a>
## Who uses Haystack
Here's a list of organizations who use Haystack. Don't hesitate to send a PR to let the world know that you use Haystack. Join our growing community!
- [Airbus](https://www.airbus.com/en)
- [Alcatel-Lucent](https://www.al-enterprise.com/)
- [BetterUp](https://www.betterup.com/)
- [Deepset](https://deepset.ai/)
- [Etalab](https://www.etalab.gouv.fr/)
- [Infineon](https://www.infineon.com/)
- [Sooth.ai](https://sooth.ai/)