mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-28 03:12:54 +00:00

* Fist attempt at using setup.cfg for dependency management * Trying the new package on the CI and in Docker too * Add composite extras_require * Add the safe_import function for document store imports and add some try-catch statements on rest_api and ui imports * Fix bug on class import and rephrase error message * Introduce typing for optional modules and add type: ignore in sparse.py * Include importlib_metadata backport for py3.7 * Add colab group to extra_requires * Fix pillow version * Fix grpcio * Separate out the crawler as another extra * Make paths relative in rest_api and ui * Update the test matrix in the CI * Add try catch statements around the optional imports too to account for direct imports * Never mix direct deps with self-references and add ES deps to the base install * Refactor several paths in tests to make them insensitive to the execution path * Include tstadel review and re-introduce Milvus1 in the tests suite, to fix * Wrap pdf conversion utils into safe_import * Update some tutorials and rever Milvus1 as default for now, see #2067 * Fix mypy config Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
57 lines
2.1 KiB
Python
57 lines
2.1 KiB
Python
import pytest
|
|
|
|
from haystack.nodes.retriever.sparse import ElasticsearchRetriever
|
|
from haystack.nodes.reader import FARMReader
|
|
from haystack.pipelines import Pipeline
|
|
|
|
from haystack.nodes.extractor import EntityExtractor, simplify_ner_for_qa
|
|
|
|
|
|
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
|
|
def test_extractor(document_store_with_docs):
|
|
|
|
es_retriever = ElasticsearchRetriever(document_store=document_store_with_docs)
|
|
ner = EntityExtractor()
|
|
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", num_processes=0)
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["Query"])
|
|
pipeline.add_node(component=ner, name="NER", inputs=["ESRetriever"])
|
|
pipeline.add_node(component=reader, name="Reader", inputs=["NER"])
|
|
|
|
prediction = pipeline.run(
|
|
query="Who lives in Berlin?",
|
|
params={
|
|
"ESRetriever": {"top_k": 1},
|
|
"Reader": {"top_k": 1},
|
|
}
|
|
)
|
|
entities = [entity["word"] for entity in prediction["answers"][0].meta["entities"]]
|
|
assert "Carla" in entities
|
|
assert "Berlin" in entities
|
|
|
|
|
|
@pytest.mark.parametrize("document_store_with_docs", ["elasticsearch"], indirect=True)
|
|
def test_extractor_output_simplifier(document_store_with_docs):
|
|
|
|
es_retriever = ElasticsearchRetriever(document_store=document_store_with_docs)
|
|
ner = EntityExtractor()
|
|
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", num_processes=0)
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(component=es_retriever, name="ESRetriever", inputs=["Query"])
|
|
pipeline.add_node(component=ner, name="NER", inputs=["ESRetriever"])
|
|
pipeline.add_node(component=reader, name="Reader", inputs=["NER"])
|
|
|
|
prediction = pipeline.run(
|
|
query="Who lives in Berlin?",
|
|
params={
|
|
"ESRetriever": {"top_k": 1},
|
|
"Reader": {"top_k": 1},
|
|
}
|
|
)
|
|
simplified = simplify_ner_for_qa(prediction)
|
|
assert simplified[0] == {
|
|
"answer": "Carla",
|
|
"entities": ["Carla"]
|
|
} |