mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-27 19:00:35 +00:00

* Fist attempt at using setup.cfg for dependency management * Trying the new package on the CI and in Docker too * Add composite extras_require * Add the safe_import function for document store imports and add some try-catch statements on rest_api and ui imports * Fix bug on class import and rephrase error message * Introduce typing for optional modules and add type: ignore in sparse.py * Include importlib_metadata backport for py3.7 * Add colab group to extra_requires * Fix pillow version * Fix grpcio * Separate out the crawler as another extra * Make paths relative in rest_api and ui * Update the test matrix in the CI * Add try catch statements around the optional imports too to account for direct imports * Never mix direct deps with self-references and add ES deps to the base install * Refactor several paths in tests to make them insensitive to the execution path * Include tstadel review and re-introduce Milvus1 in the tests suite, to fix * Wrap pdf conversion utils into safe_import * Update some tutorials and rever Milvus1 as default for now, see #2067 * Fix mypy config Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
31 lines
1.4 KiB
Python
31 lines
1.4 KiB
Python
import pytest
|
|
from pathlib import Path
|
|
|
|
from haystack.utils.preprocessing import convert_files_to_dicts, tika_convert_files_to_dicts
|
|
from haystack.utils.cleaning import clean_wiki_text
|
|
from haystack.utils.augment_squad import augment_squad
|
|
from haystack.utils.squad_data import SquadData
|
|
|
|
from conftest import SAMPLES_PATH
|
|
|
|
|
|
def test_convert_files_to_dicts():
|
|
documents = convert_files_to_dicts(dir_path=(SAMPLES_PATH).absolute(), clean_func=clean_wiki_text, split_paragraphs=True)
|
|
assert documents and len(documents) > 0
|
|
|
|
@pytest.mark.tika
|
|
def test_tika_convert_files_to_dicts():
|
|
documents = tika_convert_files_to_dicts(dir_path=SAMPLES_PATH, clean_func=clean_wiki_text, split_paragraphs=True)
|
|
assert documents and len(documents) > 0
|
|
|
|
def test_squad_augmentation():
|
|
input_ = SAMPLES_PATH/"squad"/"tiny.json"
|
|
output = SAMPLES_PATH/"squad"/"tiny_augmented.json"
|
|
glove_path = SAMPLES_PATH/"glove"/"tiny.txt" # dummy glove file, will not even be use when augmenting tiny.json
|
|
multiplication_factor = 5
|
|
augment_squad(model="distilbert-base-uncased", tokenizer="distilbert-base-uncased", squad_path=input_, output_path=output,
|
|
glove_path=glove_path, multiplication_factor=multiplication_factor)
|
|
original_squad = SquadData.from_file(input_)
|
|
augmented_squad = SquadData.from_file(output)
|
|
assert original_squad.count(unit="paragraph") == augmented_squad.count(unit="paragraph") * multiplication_factor
|