haystack/test/preview/dataclasses/test_document.py
ZanSara 8fbfca9ebb
fix: Document v2 JSON serialization (#4863)
* fix json serialization

* add missing markers

* pylint

* fix decoder bug

* pylint

* add some more tests

* linting & windows

* windows

* windows

* windows paths again
2023-05-15 11:39:04 +02:00

644 lines
19 KiB
Python

from pathlib import Path
import dataclasses
import textwrap
import pytest
import pandas as pd
import numpy as np
from haystack.preview import Document
from haystack.preview.dataclasses.document import _create_id, DocumentEncoder, DocumentDecoder
@pytest.mark.unit
def test_document_is_immutable():
doc = Document(content="test content")
with pytest.raises(dataclasses.FrozenInstanceError):
doc.content = "won't work"
@pytest.mark.unit
def test_content_type_unknown():
with pytest.raises(ValueError, match="Content type unknown: 'other'"):
Document(content="test content", content_type="other")
@pytest.mark.unit
def test_content_type_must_match_text():
Document(content="test content")
Document(content="test content", content_type="text")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content="test content", content_type="table")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content="test content", content_type="image")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content="test content", content_type="audio")
@pytest.mark.unit
def test_content_type_must_match_table():
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=pd.DataFrame([1, 2]), content_type="text")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=pd.DataFrame([1, 2]), content_type="image")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=pd.DataFrame([1, 2]), content_type="audio")
@pytest.mark.unit
def test_content_type_must_match_image_audio():
# Mimetypes are not checked - yet
Document(content=Path(__file__), content_type="image")
Document(content=Path(__file__), content_type="audio")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=Path(__file__), content_type="text")
with pytest.raises(ValueError, match="does not match the content type"):
Document(content=Path(__file__), content_type="table")
@pytest.mark.unit
def test_id_hash_keys_require_metadata():
with pytest.raises(ValueError, match="must be present in the metadata of the Document if you want to use it"):
Document(content="test content", id_hash_keys=["something"])
@pytest.mark.unit
def test_init_document_same_meta_as_main_fields():
"""
This is forbidden to prevent later issues with `Document.flatten()`
"""
with pytest.raises(ValueError, match="score"):
Document(content="test content", metadata={"score": "10/10"})
@pytest.mark.unit
def test_basic_equality_type_mismatch():
doc = Document(content="test content")
assert doc != "test content"
@pytest.mark.unit
def test_simple_table_document_equality():
doc1 = Document(content=pd.DataFrame([1, 2]), content_type="table")
doc2 = Document(content=pd.DataFrame([1, 2]), content_type="table")
assert doc1 == doc2
@pytest.mark.unit
def test_simple_image_document_equality():
doc1 = Document(content=Path(__file__).parent / "test_files" / "apple.jpg", content_type="image")
doc2 = Document(content=Path(__file__).parent / "test_files" / "apple.jpg", content_type="image")
assert doc1 == doc2
@pytest.mark.unit
def test_equality_with_embeddings():
doc1 = Document(content="test content", embedding=np.array([10, 10]))
doc2 = Document(content="test content", embedding=np.array([10, 10]))
assert doc1 == doc2
@pytest.mark.unit
def test_equality_with_embeddings_shape_check():
doc1 = Document(content="test content", embedding=np.array([10, 10]))
doc2 = Document(content="test content", embedding=np.array([[[10, 10]]]))
assert doc1 != doc2
@pytest.mark.unit
def test_equality_with_scores():
doc1 = Document(content="test content", score=100)
doc2 = Document(content="test content", score=100)
assert doc1 == doc2
@pytest.mark.unit
def test_equality_with_simple_metadata():
doc1 = Document(content="test content", metadata={"value": 1, "another": "value"})
doc2 = Document(content="test content", metadata={"value": 1, "another": "value"})
assert doc1 == doc2
@pytest.mark.unit
def test_equality_with_different_metadata():
doc1 = Document(content="test content", metadata={"value": 1})
doc2 = Document(content="test content", metadata={"value": 1, "another": "value"})
assert doc1 != doc2
@pytest.mark.unit
def test_equality_with_nested_metadata():
doc1 = Document(content="test content", metadata={"value": {"another": "value"}})
doc2 = Document(content="test content", metadata={"value": {"another": "value"}})
assert doc1 == doc2
@pytest.mark.unit
def test_equality_with_metadata_with_objects():
class TestObject:
def __eq__(self, other):
if type(self) == type(other):
return True
doc1 = Document(
content="test content", metadata={"value": np.array([0, 1, 2]), "path": Path(__file__), "obj": TestObject()}
)
doc2 = Document(
content="test content", metadata={"value": np.array([0, 1, 2]), "path": Path(__file__), "obj": TestObject()}
)
assert doc1 == doc2
@pytest.mark.unit
def test_default_text_document_to_dict():
assert Document(content="test content").to_dict() == {
"id": _create_id(classname=Document.__name__, content="test content"),
"content": "test content",
"content_type": "text",
"metadata": {},
"id_hash_keys": [],
"score": None,
"embedding": None,
}
@pytest.mark.unit
def test_default_text_document_from_dict():
assert Document.from_dict(
{
"id": _create_id(classname=Document.__name__, content="test content"),
"content": "test content",
"content_type": "text",
"metadata": {},
"id_hash_keys": [],
"score": None,
"embedding": None,
}
) == Document(content="test content")
@pytest.mark.unit
def test_default_table_document_to_dict():
df = pd.DataFrame([1, 2])
dictionary = Document(content=df, content_type="table").to_dict()
dataframe = dictionary.pop("content")
assert dataframe.equals(df)
assert dictionary == {
"id": _create_id(classname=Document.__name__, content=df),
"content_type": "table",
"metadata": {},
"id_hash_keys": [],
"score": None,
"embedding": None,
}
@pytest.mark.unit
def test_default_table_document_from_dict():
assert Document.from_dict(
{
"id": _create_id(classname=Document.__name__, content=pd.DataFrame([1, 2])),
"content": pd.DataFrame([1, 2]),
"content_type": "table",
"metadata": {},
"id_hash_keys": [],
"score": None,
"embedding": None,
}
) == Document(content=pd.DataFrame([1, 2]), content_type="table")
@pytest.mark.unit
def test_default_image_document_to_dict():
path = Path(__file__).parent / "test_files" / "apple.jpg"
assert Document(content=path, content_type="image").to_dict() == {
"id": _create_id(classname=Document.__name__, content=path),
"content": path,
"content_type": "image",
"metadata": {},
"id_hash_keys": [],
"score": None,
"embedding": None,
}
@pytest.mark.unit
def test_default_image_document_from_dict():
assert Document.from_dict(
{
"id": _create_id(classname=Document.__name__, content=Path(__file__).parent / "test_files" / "apple.jpg"),
"content": Path(__file__).parent / "test_files" / "apple.jpg",
"content_type": "image",
"metadata": {},
"id_hash_keys": [],
"score": None,
"embedding": None,
}
) == Document(content=Path(__file__).parent / "test_files" / "apple.jpg", content_type="image")
@pytest.mark.unit
def test_document_with_most_attributes_to_dict():
"""
This tests also id_hash_keys
"""
doc = Document(
content="test content",
content_type="text",
metadata={"some": "values", "test": 10},
id_hash_keys=["test"],
score=0.99,
embedding=np.zeros([10, 10]),
)
dictionary = doc.to_dict()
embedding = dictionary.pop("embedding")
assert (embedding == np.zeros([10, 10])).all()
assert dictionary == {
"id": _create_id(
classname=Document.__name__,
content="test content",
id_hash_keys=["test"],
metadata={"some": "values", "test": 10},
),
"content": "test content",
"content_type": "text",
"metadata": {"some": "values", "test": 10},
"id_hash_keys": ["test"],
"score": 0.99,
}
@pytest.mark.unit
def test_document_with_most_attributes_from_dict():
embedding = np.zeros([10, 10])
assert Document.from_dict(
{
"id": _create_id(
classname=Document.__name__,
content="test content",
id_hash_keys=["test"],
metadata={"some": "values", "test": 10},
),
"content": "test content",
"content_type": "text",
"metadata": {"some": "values", "test": 10},
"id_hash_keys": ["test"],
"score": 0.99,
"embedding": embedding,
}
) == Document(
content="test content",
content_type="text",
metadata={"some": "values", "test": 10},
id_hash_keys=["test"],
score=0.99,
embedding=embedding,
)
@pytest.mark.unit
def test_default_text_document_to_json():
doc_id = _create_id(classname=Document.__name__, content="test content")
doc_1 = Document(content="test content").to_json(indent=4).strip()
doc_2 = textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
).strip()
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_text_document_from_json():
doc_id = _create_id(classname=Document.__name__, content="test content")
doc_1 = Document(content="test content")
doc_2 = Document.from_json(
"""{"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
)
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_table_document_to_json():
df = pd.DataFrame([1, 2])
doc_id = _create_id(classname=Document.__name__, content=df)
doc_1 = Document(content=df, content_type="table").to_json(indent=4).strip()
doc_2 = textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": \""""
+ df.to_json().replace('"', '\\"')
+ """\",
"content_type": "table",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
).strip()
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_table_document_from_json():
df = pd.DataFrame([1, 2])
doc_id = _create_id(classname=Document.__name__, content=pd.DataFrame([1, 2]))
doc_1 = Document(content=df, content_type="table")
doc_2 = Document.from_json(
"""{
"id": \""""
+ doc_id
+ """\",
"content": \""""
+ pd.DataFrame([1, 2]).to_json().replace('"', '\\"')
+ """\",
"content_type": "table",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
)
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_image_document_to_json():
path = Path(__file__).parent / "test_files" / "apple.jpg"
doc_id = _create_id(classname=Document.__name__, content=path)
doc_1 = Document(content=path, content_type="image").to_json(indent=4).strip()
doc_2 = textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": \""""
+ str(path.absolute()).replace("\\", "\\\\")
+ """\",
"content_type": "image",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
).strip()
assert doc_1 == doc_2
@pytest.mark.unit
def test_default_image_document_from_json():
path = Path(__file__).parent / "test_files" / "apple.jpg"
doc_id = _create_id(classname=Document.__name__, content=path)
doc_1 = Document(content=path, content_type="image")
doc_2 = Document.from_json(
"""{"id": \""""
+ doc_id
+ """\",
"content": \""""
+ str(path.absolute()).replace("\\", "\\\\")
+ """\",
"content_type": "image",
"metadata": {},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
)
assert doc_1 == doc_2
@pytest.mark.unit
def test_full_document_to_json(tmp_path):
class TestClass:
def __repr__(self):
return "<the object>"
doc_id = _create_id(classname=Document.__name__, content="test content")
doc_1 = Document(
content="test content",
metadata={"some object": TestClass(), "a path": tmp_path / "test.txt"},
embedding=np.array([1, 2, 3, 4]),
)
doc_json = doc_1.to_json(indent=4).strip()
doc_2 = textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {
"some object": "<the object>",
"a path": \""""
+ str((tmp_path / "test.txt").absolute()).replace("\\", "\\\\")
+ """\"
},
"id_hash_keys": [],
"score": null,
"embedding": [
1,
2,
3,
4
]
}"""
).strip()
assert doc_json == doc_2
@pytest.mark.unit
def test_full_document_from_json(tmp_path):
doc_id = _create_id(classname=Document.__name__, content="test content")
doc_1 = Document(
content="test content",
metadata={"a path": str(tmp_path / "test.txt")}, # Paths are not cast back to Path objects
embedding=np.array([1, 2, 3, 4]),
)
doc_2 = Document.from_json(
"""{"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {
"a path": \""""
+ str((tmp_path / "test.txt").absolute()).replace("\\", "\\\\")
+ """\"
},
"id_hash_keys": [],
"score": null,
"embedding": [
1,
2,
3,
4
]
}"""
)
assert doc_1 == doc_2
@pytest.mark.unit
def test_to_json_custom_encoder(tmp_path):
class SerializableTestClass:
...
class TestEncoder(DocumentEncoder):
def default(self, obj):
if isinstance(obj, SerializableTestClass):
return "<<CUSTOM ENCODING>>"
return DocumentEncoder.default(self, obj)
doc_id = _create_id(classname=Document.__name__, content="test content")
doc = Document(content="test content", metadata={"some object": SerializableTestClass()})
doc_json = doc.to_json(indent=4, json_encoder=TestEncoder).strip()
assert (
doc_json
== textwrap.dedent(
""" {
"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {
"some object": "<<CUSTOM ENCODING>>"
},
"id_hash_keys": [],
"score": null,
"embedding": null
}"""
).strip()
)
@pytest.mark.unit
def test_from_json_custom_decoder():
class TestClass:
def __eq__(self, other):
return type(self) == type(other)
class TestDecoder(DocumentDecoder):
def __init__(self, *args, **kwargs):
super().__init__(object_hook=self.object_hook)
def object_hook(self, dictionary):
if "metadata" in dictionary:
for key, value in dictionary["metadata"].items():
if value == "<<CUSTOM ENCODING>>":
dictionary["metadata"][key] = TestClass()
return dictionary
doc_id = _create_id(classname=Document.__name__, content="test content")
doc = Document(content="test content", metadata={"some object": TestClass()})
assert doc == Document.from_json(
""" {
"id": \""""
+ doc_id
+ """\",
"content": "test content",
"content_type": "text",
"metadata": {
"some object": "<<CUSTOM ENCODING>>"
},
"id_hash_keys": [],
"score": null,
"embedding": null
}""",
json_decoder=TestDecoder,
)
@pytest.mark.unit
def test_flatten_text_document_no_meta():
assert Document(content="test content").flatten() == {
"id": _create_id(classname=Document.__name__, content="test content"),
"content": "test content",
"content_type": "text",
"id_hash_keys": [],
"score": None,
"embedding": None,
}
@pytest.mark.unit
def test_flatten_text_document():
assert Document(content="test content", metadata={"name": "document name", "page": 123}).flatten() == {
"id": _create_id(classname=Document.__name__, content="test content"),
"content": "test content",
"content_type": "text",
"name": "document name",
"page": 123,
"id_hash_keys": [],
"score": None,
"embedding": None,
}
@pytest.mark.unit
def test_flatten_table_document():
df = pd.DataFrame([1, 2])
flat = Document(content=df, content_type="table", metadata={"table-name": "table title", "section": 3}).flatten()
dataframe = flat.pop("content")
assert dataframe.equals(df)
assert flat == {
"id": _create_id(classname=Document.__name__, content=df),
"content_type": "table",
"table-name": "table title",
"section": 3,
"id_hash_keys": [],
"score": None,
"embedding": None,
}
@pytest.mark.unit
def test_flatten_image_document():
path = Path(__file__).parent / "test_files" / "apple.jpg"
assert Document(
content=path, content_type="image", metadata={"image title": "The Apple", "year": 1993}
).flatten() == {
"id": _create_id(classname=Document.__name__, content=path),
"content": path,
"content_type": "image",
"image title": "The Apple",
"year": 1993,
"id_hash_keys": [],
"score": None,
"embedding": None,
}