haystack/test/components/embedders/test_azure_document_embedder.py
2025-05-26 16:22:51 +00:00

255 lines
12 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
import os
from openai import APIError
from haystack.utils.auth import Secret
import pytest
from haystack import Document
from haystack.components.embedders import AzureOpenAIDocumentEmbedder
from haystack.utils.azure import default_azure_ad_token_provider
from unittest.mock import Mock, patch
class TestAzureOpenAIDocumentEmbedder:
def test_init_default(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
embedder = AzureOpenAIDocumentEmbedder(azure_endpoint="https://example-resource.azure.openai.com/")
assert embedder.azure_deployment == "text-embedding-ada-002"
assert embedder.model == "text-embedding-ada-002"
assert embedder.dimensions is None
assert embedder.organization is None
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.batch_size == 32
assert embedder.progress_bar is True
assert embedder.meta_fields_to_embed == []
assert embedder.embedding_separator == "\n"
assert embedder.default_headers == {}
assert embedder.azure_ad_token_provider is None
assert embedder.http_client_kwargs is None
def test_init_with_0_max_retries(self, monkeypatch):
"""Tests that the max_retries init param is set correctly if equal 0"""
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
embedder = AzureOpenAIDocumentEmbedder(
azure_endpoint="https://example-resource.azure.openai.com/", max_retries=0
)
assert embedder.azure_deployment == "text-embedding-ada-002"
assert embedder.model == "text-embedding-ada-002"
assert embedder.dimensions is None
assert embedder.organization is None
assert embedder.prefix == ""
assert embedder.suffix == ""
assert embedder.batch_size == 32
assert embedder.progress_bar is True
assert embedder.meta_fields_to_embed == []
assert embedder.embedding_separator == "\n"
assert embedder.default_headers == {}
assert embedder.azure_ad_token_provider is None
assert embedder.max_retries == 0
def test_to_dict(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
component = AzureOpenAIDocumentEmbedder(azure_endpoint="https://example-resource.azure.openai.com/")
data = component.to_dict()
assert data == {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": None,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": None,
"prefix": "",
"suffix": "",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 5,
"timeout": 30.0,
"default_headers": {},
"azure_ad_token_provider": None,
"http_client_kwargs": None,
},
}
def test_to_dict_with_parameters(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
component = AzureOpenAIDocumentEmbedder(
azure_endpoint="https://example-resource.azure.openai.com/",
azure_deployment="text-embedding-ada-002",
dimensions=768,
organization="HaystackCI",
timeout=60.0,
max_retries=10,
prefix="prefix ",
suffix=" suffix",
default_headers={"x-custom-header": "custom-value"},
azure_ad_token_provider=default_azure_ad_token_provider,
http_client_kwargs={"proxy": "http://example.com:3128", "verify": False},
)
data = component.to_dict()
assert data == {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": 768,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": "HaystackCI",
"prefix": "prefix ",
"suffix": " suffix",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 10,
"timeout": 60.0,
"default_headers": {"x-custom-header": "custom-value"},
"azure_ad_token_provider": "haystack.utils.azure.default_azure_ad_token_provider",
"http_client_kwargs": {"proxy": "http://example.com:3128", "verify": False},
},
}
def test_from_dict(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
data = {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": None,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": None,
"prefix": "",
"suffix": "",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 5,
"timeout": 30.0,
"default_headers": {},
"azure_ad_token_provider": None,
"http_client_kwargs": None,
},
}
component = AzureOpenAIDocumentEmbedder.from_dict(data)
assert component.azure_deployment == "text-embedding-ada-002"
assert component.azure_endpoint == "https://example-resource.azure.openai.com/"
assert component.api_version == "2023-05-15"
assert component.max_retries == 5
assert component.timeout == 30.0
assert component.prefix == ""
assert component.suffix == ""
assert component.default_headers == {}
assert component.azure_ad_token_provider is None
assert component.http_client_kwargs is None
def test_from_dict_with_parameters(self, monkeypatch):
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
data = {
"type": "haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder",
"init_parameters": {
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
"api_version": "2023-05-15",
"azure_deployment": "text-embedding-ada-002",
"dimensions": 768,
"azure_endpoint": "https://example-resource.azure.openai.com/",
"organization": "HaystackCI",
"prefix": "prefix ",
"suffix": " suffix",
"batch_size": 32,
"progress_bar": True,
"meta_fields_to_embed": [],
"embedding_separator": "\n",
"max_retries": 10,
"timeout": 60.0,
"default_headers": {"x-custom-header": "custom-value"},
"azure_ad_token_provider": "haystack.utils.azure.default_azure_ad_token_provider",
"http_client_kwargs": {"proxy": "http://example.com:3128", "verify": False},
},
}
component = AzureOpenAIDocumentEmbedder.from_dict(data)
assert component.azure_deployment == "text-embedding-ada-002"
assert component.azure_endpoint == "https://example-resource.azure.openai.com/"
assert component.api_version == "2023-05-15"
assert component.max_retries == 10
assert component.timeout == 60.0
assert component.prefix == "prefix "
assert component.suffix == " suffix"
assert component.default_headers == {"x-custom-header": "custom-value"}
assert component.azure_ad_token_provider is not None
assert component.http_client_kwargs == {"proxy": "http://example.com:3128", "verify": False}
def test_embed_batch_handles_exceptions_gracefully(self, caplog):
embedder = AzureOpenAIDocumentEmbedder(
azure_endpoint="https://test.openai.azure.com",
api_key=Secret.from_token("fake-api-key"),
azure_deployment="text-embedding-ada-002",
embedding_separator=" | ",
)
fake_texts_to_embed = {"1": "text1", "2": "text2"}
with patch.object(
embedder.client.embeddings,
"create",
side_effect=APIError(message="Mocked error", request=Mock(), body=None),
):
embedder._embed_batch(texts_to_embed=fake_texts_to_embed, batch_size=32)
assert len(caplog.records) == 1
assert "Failed embedding of documents 1, 2 caused by Mocked error" in caplog.text
@pytest.mark.integration
@pytest.mark.skipif(
not os.environ.get("AZURE_OPENAI_API_KEY", None) and not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
reason=(
"Please export env variables called AZURE_OPENAI_API_KEY containing "
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
"the Azure OpenAI endpoint URL to run this test."
),
)
def test_run(self):
docs = [
Document(content="I love cheese", meta={"topic": "Cuisine"}),
Document(content="A transformer is a deep learning architecture", meta={"topic": "ML"}),
]
# the default model is text-embedding-ada-002 even if we don't specify it, but let's be explicit
embedder = AzureOpenAIDocumentEmbedder(
azure_deployment="text-embedding-ada-002",
meta_fields_to_embed=["topic"],
embedding_separator=" | ",
organization="HaystackCI",
)
result = embedder.run(documents=docs)
documents_with_embeddings = result["documents"]
metadata = result["meta"]
assert isinstance(documents_with_embeddings, list)
assert len(documents_with_embeddings) == len(docs)
for doc in documents_with_embeddings:
assert isinstance(doc, Document)
assert isinstance(doc.embedding, list)
assert len(doc.embedding) == 1536
assert all(isinstance(x, float) for x in doc.embedding)
assert metadata["usage"]["prompt_tokens"] == 15
assert metadata["usage"]["total_tokens"] == 15
assert "ada" in metadata["model"]