mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-06-26 22:00:13 +00:00
192 lines
9.2 KiB
Python
192 lines
9.2 KiB
Python
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import os
|
|
|
|
import pytest
|
|
|
|
from haystack.components.embedders import AzureOpenAITextEmbedder
|
|
from haystack.utils.azure import default_azure_ad_token_provider
|
|
|
|
|
|
class TestAzureOpenAITextEmbedder:
|
|
def test_init_default(self, monkeypatch):
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
|
|
embedder = AzureOpenAITextEmbedder(azure_endpoint="https://example-resource.azure.openai.com/")
|
|
|
|
assert embedder.client.api_key == "fake-api-key"
|
|
assert embedder.azure_deployment == "text-embedding-ada-002"
|
|
assert embedder.model == "text-embedding-ada-002"
|
|
assert embedder.dimensions is None
|
|
assert embedder.organization is None
|
|
assert embedder.prefix == ""
|
|
assert embedder.suffix == ""
|
|
assert embedder.default_headers == {}
|
|
assert embedder.azure_ad_token_provider is None
|
|
assert embedder.http_client_kwargs is None
|
|
|
|
def test_init_with_zero_max_retries(self, monkeypatch):
|
|
"""Tests that the max_retries init param is set correctly if equal 0"""
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
|
|
embedder = AzureOpenAITextEmbedder(azure_endpoint="https://example-resource.azure.openai.com/", max_retries=0)
|
|
|
|
assert embedder.client.api_key == "fake-api-key"
|
|
assert embedder.azure_deployment == "text-embedding-ada-002"
|
|
assert embedder.model == "text-embedding-ada-002"
|
|
assert embedder.dimensions is None
|
|
assert embedder.organization is None
|
|
assert embedder.prefix == ""
|
|
assert embedder.suffix == ""
|
|
assert embedder.default_headers == {}
|
|
assert embedder.azure_ad_token_provider is None
|
|
assert embedder.max_retries == 0
|
|
|
|
def test_to_dict_default(self, monkeypatch):
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
|
|
component = AzureOpenAITextEmbedder(azure_endpoint="https://example-resource.azure.openai.com/")
|
|
data = component.to_dict()
|
|
assert data == {
|
|
"type": "haystack.components.embedders.azure_text_embedder.AzureOpenAITextEmbedder",
|
|
"init_parameters": {
|
|
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
|
|
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
|
|
"azure_deployment": "text-embedding-ada-002",
|
|
"dimensions": None,
|
|
"organization": None,
|
|
"azure_endpoint": "https://example-resource.azure.openai.com/",
|
|
"api_version": "2023-05-15",
|
|
"max_retries": 5,
|
|
"timeout": 30.0,
|
|
"prefix": "",
|
|
"suffix": "",
|
|
"default_headers": {},
|
|
"azure_ad_token_provider": None,
|
|
"http_client_kwargs": None,
|
|
},
|
|
}
|
|
|
|
def test_to_dict_with_params(self, monkeypatch):
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
|
|
component = AzureOpenAITextEmbedder(
|
|
azure_endpoint="https://example-resource.azure.openai.com/",
|
|
azure_deployment="text-embedding-ada-002",
|
|
dimensions=768,
|
|
organization="HaystackCI",
|
|
timeout=60.0,
|
|
max_retries=10,
|
|
prefix="prefix ",
|
|
suffix=" suffix",
|
|
default_headers={"x-custom-header": "custom-value"},
|
|
azure_ad_token_provider=default_azure_ad_token_provider,
|
|
http_client_kwargs={"proxy": "http://example.com:3128", "verify": False},
|
|
)
|
|
data = component.to_dict()
|
|
assert data == {
|
|
"type": "haystack.components.embedders.azure_text_embedder.AzureOpenAITextEmbedder",
|
|
"init_parameters": {
|
|
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
|
|
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
|
|
"azure_deployment": "text-embedding-ada-002",
|
|
"dimensions": 768,
|
|
"organization": "HaystackCI",
|
|
"azure_endpoint": "https://example-resource.azure.openai.com/",
|
|
"api_version": "2023-05-15",
|
|
"max_retries": 10,
|
|
"timeout": 60.0,
|
|
"prefix": "prefix ",
|
|
"suffix": " suffix",
|
|
"default_headers": {"x-custom-header": "custom-value"},
|
|
"azure_ad_token_provider": "haystack.utils.azure.default_azure_ad_token_provider",
|
|
"http_client_kwargs": {"proxy": "http://example.com:3128", "verify": False},
|
|
},
|
|
}
|
|
|
|
def test_from_dict(self, monkeypatch):
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
|
|
data = {
|
|
"type": "haystack.components.embedders.azure_text_embedder.AzureOpenAITextEmbedder",
|
|
"init_parameters": {
|
|
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
|
|
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
|
|
"azure_deployment": "text-embedding-ada-002",
|
|
"dimensions": None,
|
|
"organization": None,
|
|
"azure_endpoint": "https://example-resource.azure.openai.com/",
|
|
"api_version": "2023-05-15",
|
|
"max_retries": 5,
|
|
"timeout": 30.0,
|
|
"prefix": "",
|
|
"suffix": "",
|
|
"default_headers": {},
|
|
"http_client_kwargs": None,
|
|
},
|
|
}
|
|
component = AzureOpenAITextEmbedder.from_dict(data)
|
|
assert component.azure_deployment == "text-embedding-ada-002"
|
|
assert component.model == "text-embedding-ada-002"
|
|
assert component.azure_endpoint == "https://example-resource.azure.openai.com/"
|
|
assert component.api_version == "2023-05-15"
|
|
assert component.max_retries == 5
|
|
assert component.timeout == 30.0
|
|
assert component.prefix == ""
|
|
assert component.suffix == ""
|
|
assert component.default_headers == {}
|
|
assert component.azure_ad_token_provider is None
|
|
assert component.http_client_kwargs is None
|
|
|
|
def test_from_dict_with_parameters(self, monkeypatch):
|
|
monkeypatch.setenv("AZURE_OPENAI_API_KEY", "fake-api-key")
|
|
data = {
|
|
"type": "haystack.components.embedders.azure_text_embedder.AzureOpenAITextEmbedder",
|
|
"init_parameters": {
|
|
"api_key": {"env_vars": ["AZURE_OPENAI_API_KEY"], "strict": False, "type": "env_var"},
|
|
"azure_ad_token": {"env_vars": ["AZURE_OPENAI_AD_TOKEN"], "strict": False, "type": "env_var"},
|
|
"azure_deployment": "text-embedding-ada-002",
|
|
"dimensions": 768,
|
|
"organization": "HaystackCI",
|
|
"azure_endpoint": "https://example-resource.azure.openai.com/",
|
|
"api_version": "2023-05-15",
|
|
"max_retries": 10,
|
|
"timeout": 60.0,
|
|
"prefix": "prefix ",
|
|
"suffix": " suffix",
|
|
"default_headers": {"x-custom-header": "custom-value"},
|
|
"azure_ad_token_provider": "haystack.utils.azure.default_azure_ad_token_provider",
|
|
"http_client_kwargs": {"proxy": "http://example.com:3128", "verify": False},
|
|
},
|
|
}
|
|
component = AzureOpenAITextEmbedder.from_dict(data)
|
|
assert component.azure_deployment == "text-embedding-ada-002"
|
|
assert component.model == "text-embedding-ada-002"
|
|
assert component.azure_endpoint == "https://example-resource.azure.openai.com/"
|
|
assert component.api_version == "2023-05-15"
|
|
assert component.max_retries == 10
|
|
assert component.timeout == 60.0
|
|
assert component.prefix == "prefix "
|
|
assert component.suffix == " suffix"
|
|
assert component.default_headers == {"x-custom-header": "custom-value"}
|
|
assert component.azure_ad_token_provider is not None
|
|
assert component.http_client_kwargs == {"proxy": "http://example.com:3128", "verify": False}
|
|
|
|
@pytest.mark.integration
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("AZURE_OPENAI_API_KEY", None) and not os.environ.get("AZURE_OPENAI_ENDPOINT", None),
|
|
reason=(
|
|
"Please export env variables called AZURE_OPENAI_API_KEY containing "
|
|
"the Azure OpenAI key, AZURE_OPENAI_ENDPOINT containing "
|
|
"the Azure OpenAI endpoint URL to run this test."
|
|
),
|
|
)
|
|
def test_run(self):
|
|
# the default model is text-embedding-ada-002 even if we don't specify it, but let's be explicit
|
|
embedder = AzureOpenAITextEmbedder(
|
|
azure_deployment="text-embedding-ada-002", prefix="prefix ", suffix=" suffix", organization="HaystackCI"
|
|
)
|
|
result = embedder.run(text="The food was delicious")
|
|
|
|
assert len(result["embedding"]) == 1536
|
|
assert all(isinstance(x, float) for x in result["embedding"])
|
|
assert result["meta"]["usage"] == {"prompt_tokens": 6, "total_tokens": 6}
|
|
assert "ada" in result["meta"]["model"]
|