mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-06-26 22:00:13 +00:00
328 lines
15 KiB
Python
328 lines
15 KiB
Python
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import os
|
|
import math
|
|
from typing import List
|
|
|
|
import pytest
|
|
|
|
from haystack import Pipeline
|
|
from haystack.components.evaluators import FaithfulnessEvaluator
|
|
from haystack.utils.auth import Secret
|
|
from haystack.dataclasses.chat_message import ChatMessage
|
|
from haystack.components.generators.chat.openai import OpenAIChatGenerator
|
|
|
|
|
|
class TestFaithfulnessEvaluator:
|
|
def test_init_default(self, monkeypatch):
|
|
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
|
|
|
component = FaithfulnessEvaluator()
|
|
|
|
assert component.instructions == (
|
|
"Your task is to judge the faithfulness or groundedness of statements based "
|
|
"on context information. First, please extract statements from a provided predicted "
|
|
"answer to a question. Second, calculate a faithfulness score for each "
|
|
"statement made in the predicted answer. The score is 1 if the statement can be "
|
|
"inferred from the provided context or 0 if it cannot be inferred."
|
|
)
|
|
assert component.inputs == [
|
|
("questions", List[str]),
|
|
("contexts", List[List[str]]),
|
|
("predicted_answers", List[str]),
|
|
]
|
|
assert component.outputs == ["statements", "statement_scores"]
|
|
assert component.examples == [
|
|
{
|
|
"inputs": {
|
|
"questions": "What is the capital of Germany and when was it founded?",
|
|
"contexts": ["Berlin is the capital of Germany and was founded in 1244."],
|
|
"predicted_answers": "The capital of Germany, Berlin, was founded in the 13th century.",
|
|
},
|
|
"outputs": {
|
|
"statements": ["Berlin is the capital of Germany.", "Berlin was founded in 1244."],
|
|
"statement_scores": [1, 1],
|
|
},
|
|
},
|
|
{
|
|
"inputs": {
|
|
"questions": "What is the capital of France?",
|
|
"contexts": ["Berlin is the capital of Germany."],
|
|
"predicted_answers": "Paris",
|
|
},
|
|
"outputs": {"statements": ["Paris is the capital of France."], "statement_scores": [0]},
|
|
},
|
|
{
|
|
"inputs": {
|
|
"questions": "What is the capital of Italy?",
|
|
"contexts": ["Rome is the capital of Italy."],
|
|
"predicted_answers": "Rome is the capital of Italy with more than 4 million inhabitants.",
|
|
},
|
|
"outputs": {
|
|
"statements": ["Rome is the capital of Italy.", "Rome has more than 4 million inhabitants."],
|
|
"statement_scores": [1, 0],
|
|
},
|
|
},
|
|
]
|
|
|
|
assert isinstance(component._chat_generator, OpenAIChatGenerator)
|
|
assert component._chat_generator.client.api_key == "test-api-key"
|
|
assert component._chat_generator.generation_kwargs == {"response_format": {"type": "json_object"}, "seed": 42}
|
|
|
|
def test_init_fail_wo_openai_api_key(self, monkeypatch):
|
|
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
|
|
with pytest.raises(ValueError, match="None of the .* environment variables are set"):
|
|
FaithfulnessEvaluator()
|
|
|
|
def test_init_with_parameters(self, monkeypatch):
|
|
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
|
component = FaithfulnessEvaluator(
|
|
examples=[
|
|
{
|
|
"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"},
|
|
"outputs": {"custom_score": 1},
|
|
},
|
|
{
|
|
"inputs": {"predicted_answers": "Football is the most popular sport."},
|
|
"outputs": {"custom_score": 0},
|
|
},
|
|
]
|
|
)
|
|
|
|
assert component.examples == [
|
|
{"inputs": {"predicted_answers": "Damn, this is straight outta hell!!!"}, "outputs": {"custom_score": 1}},
|
|
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"custom_score": 0}},
|
|
]
|
|
|
|
assert isinstance(component._chat_generator, OpenAIChatGenerator)
|
|
assert component._chat_generator.client.api_key == "test-api-key"
|
|
assert component._chat_generator.generation_kwargs == {"response_format": {"type": "json_object"}, "seed": 42}
|
|
|
|
def test_init_with_chat_generator(self, monkeypatch):
|
|
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
|
chat_generator = OpenAIChatGenerator(generation_kwargs={"response_format": {"type": "json_object"}, "seed": 42})
|
|
component = FaithfulnessEvaluator(chat_generator=chat_generator)
|
|
|
|
assert component._chat_generator is chat_generator
|
|
|
|
def test_to_dict_with_parameters(self, monkeypatch):
|
|
monkeypatch.setenv("ENV_VAR", "test-api-key")
|
|
chat_generator = OpenAIChatGenerator(
|
|
generation_kwargs={"response_format": {"type": "json_object"}, "seed": 42},
|
|
api_key=Secret.from_env_var("ENV_VAR"),
|
|
)
|
|
|
|
component = FaithfulnessEvaluator(
|
|
chat_generator=chat_generator,
|
|
examples=[
|
|
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
|
],
|
|
raise_on_failure=False,
|
|
progress_bar=False,
|
|
)
|
|
data = component.to_dict()
|
|
|
|
assert data == {
|
|
"type": "haystack.components.evaluators.faithfulness.FaithfulnessEvaluator",
|
|
"init_parameters": {
|
|
"chat_generator": chat_generator.to_dict(),
|
|
"examples": [
|
|
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
|
],
|
|
"progress_bar": False,
|
|
"raise_on_failure": False,
|
|
},
|
|
}
|
|
|
|
def test_from_dict(self, monkeypatch):
|
|
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
|
chat_generator = OpenAIChatGenerator(generation_kwargs={"response_format": {"type": "json_object"}, "seed": 42})
|
|
|
|
data = {
|
|
"type": "haystack.components.evaluators.faithfulness.FaithfulnessEvaluator",
|
|
"init_parameters": {
|
|
"chat_generator": chat_generator.to_dict(),
|
|
"examples": [
|
|
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
|
],
|
|
},
|
|
}
|
|
component = FaithfulnessEvaluator.from_dict(data)
|
|
assert isinstance(component._chat_generator, OpenAIChatGenerator)
|
|
assert component._chat_generator.client.api_key == "test-api-key"
|
|
assert component._chat_generator.generation_kwargs == {"response_format": {"type": "json_object"}, "seed": 42}
|
|
assert component.examples == [
|
|
{"inputs": {"predicted_answers": "Football is the most popular sport."}, "outputs": {"score": 0}}
|
|
]
|
|
|
|
def test_pipeline_serde(self, monkeypatch):
|
|
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
|
|
|
component = FaithfulnessEvaluator()
|
|
pipeline = Pipeline()
|
|
pipeline.add_component("evaluator", component)
|
|
|
|
serialized_pipeline = pipeline.dumps()
|
|
deserialized_pipeline = Pipeline.loads(serialized_pipeline)
|
|
assert deserialized_pipeline == pipeline
|
|
|
|
def test_run_calculates_mean_score(self, monkeypatch):
|
|
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
|
component = FaithfulnessEvaluator()
|
|
|
|
def chat_generator_run(self, *args, **kwargs):
|
|
if "Football" in kwargs["messages"][0].text:
|
|
return {
|
|
"replies": [ChatMessage.from_assistant('{"statements": ["a", "b"], "statement_scores": [1, 0]}')]
|
|
}
|
|
else:
|
|
return {
|
|
"replies": [ChatMessage.from_assistant('{"statements": ["c", "d"], "statement_scores": [1, 1]}')]
|
|
}
|
|
|
|
monkeypatch.setattr("haystack.components.evaluators.llm_evaluator.OpenAIChatGenerator.run", chat_generator_run)
|
|
|
|
questions = ["Which is the most popular global sport?", "Who created the Python language?"]
|
|
contexts = [
|
|
[
|
|
"The popularity of sports can be measured in various ways, including TV viewership, social media "
|
|
"presence, number of participants, and economic impact. Football is undoubtedly the world's most "
|
|
"popular sport with major events like the FIFA World Cup and sports personalities like Ronaldo and "
|
|
"Messi, drawing a followership of more than 4 billion people."
|
|
],
|
|
[
|
|
"Python, created by Guido van Rossum in the late 1980s, is a high-level general-purpose programming "
|
|
"language. Its design philosophy emphasizes code readability, and its language constructs aim to help "
|
|
"programmers write clear, logical code for both small and large-scale software projects."
|
|
],
|
|
]
|
|
predicted_answers = [
|
|
"Football is the most popular sport with around 4 billion followers worldwide.",
|
|
"Python is a high-level general-purpose programming language that was created by George Lucas.",
|
|
]
|
|
results = component.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
|
|
assert results == {
|
|
"individual_scores": [0.5, 1],
|
|
"results": [
|
|
{"score": 0.5, "statement_scores": [1, 0], "statements": ["a", "b"]},
|
|
{"score": 1, "statement_scores": [1, 1], "statements": ["c", "d"]},
|
|
],
|
|
"score": 0.75,
|
|
"meta": None,
|
|
}
|
|
|
|
def test_run_no_statements_extracted(self, monkeypatch):
|
|
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
|
component = FaithfulnessEvaluator()
|
|
|
|
def chat_generator_run(self, *args, **kwargs):
|
|
if "Football" in kwargs["messages"][0].text:
|
|
return {
|
|
"replies": [ChatMessage.from_assistant('{"statements": ["a", "b"], "statement_scores": [1, 0]}')]
|
|
}
|
|
else:
|
|
return {"replies": [ChatMessage.from_assistant('{"statements": [], "statement_scores": []}')]}
|
|
|
|
monkeypatch.setattr("haystack.components.evaluators.llm_evaluator.OpenAIChatGenerator.run", chat_generator_run)
|
|
|
|
questions = ["Which is the most popular global sport?", "Who created the Python language?"]
|
|
contexts = [
|
|
[
|
|
"The popularity of sports can be measured in various ways, including TV viewership, social media "
|
|
"presence, number of participants, and economic impact. Football is undoubtedly the world's most "
|
|
"popular sport with major events like the FIFA World Cup and sports personalities like Ronaldo and "
|
|
"Messi, drawing a followership of more than 4 billion people."
|
|
],
|
|
[],
|
|
]
|
|
predicted_answers = [
|
|
"Football is the most popular sport with around 4 billion followers worldwide.",
|
|
"I don't know.",
|
|
]
|
|
results = component.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
|
|
assert results == {
|
|
"individual_scores": [0.5, 0],
|
|
"results": [
|
|
{"score": 0.5, "statement_scores": [1, 0], "statements": ["a", "b"]},
|
|
{"score": 0, "statement_scores": [], "statements": []},
|
|
],
|
|
"score": 0.25,
|
|
"meta": None,
|
|
}
|
|
|
|
def test_run_missing_parameters(self, monkeypatch):
|
|
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
|
component = FaithfulnessEvaluator()
|
|
with pytest.raises(ValueError, match="LLM evaluator expected input parameter"):
|
|
component.run()
|
|
|
|
def test_run_returns_nan_raise_on_failure_false(self, monkeypatch):
|
|
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
|
|
component = FaithfulnessEvaluator(raise_on_failure=False)
|
|
|
|
def chat_generator_run(self, *args, **kwargs):
|
|
if "Python" in kwargs["messages"][0].text:
|
|
raise Exception("OpenAI API request failed.")
|
|
else:
|
|
return {
|
|
"replies": [ChatMessage.from_assistant('{"statements": ["c", "d"], "statement_scores": [1, 1]}')]
|
|
}
|
|
|
|
monkeypatch.setattr("haystack.components.evaluators.llm_evaluator.OpenAIChatGenerator.run", chat_generator_run)
|
|
|
|
questions = ["Which is the most popular global sport?", "Who created the Python language?"]
|
|
contexts = [
|
|
[
|
|
"The popularity of sports can be measured in various ways, including TV viewership, social media "
|
|
"presence, number of participants, and economic impact. Football is undoubtedly the world's most "
|
|
"popular sport with major events like the FIFA World Cup and sports personalities like Ronaldo and "
|
|
"Messi, drawing a followership of more than 4 billion people."
|
|
],
|
|
[
|
|
"Python, created by Guido van Rossum in the late 1980s, is a high-level general-purpose programming "
|
|
"language. Its design philosophy emphasizes code readability, and its language constructs aim to help "
|
|
"programmers write clear, logical code for both small and large-scale software projects."
|
|
],
|
|
]
|
|
predicted_answers = [
|
|
"Football is the most popular sport with around 4 billion followers worldwide.",
|
|
"Guido van Rossum.",
|
|
]
|
|
results = component.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
|
|
|
|
assert math.isnan(results["score"])
|
|
|
|
assert results["individual_scores"][0] == 1.0
|
|
assert math.isnan(results["individual_scores"][1])
|
|
|
|
assert results["results"][0] == {"statements": ["c", "d"], "statement_scores": [1, 1], "score": 1.0}
|
|
|
|
assert results["results"][1]["statements"] == []
|
|
assert results["results"][1]["statement_scores"] == []
|
|
assert math.isnan(results["results"][1]["score"])
|
|
|
|
@pytest.mark.skipif(
|
|
not os.environ.get("OPENAI_API_KEY", None),
|
|
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
|
|
)
|
|
@pytest.mark.integration
|
|
def test_live_run(self):
|
|
questions = ["What is Python and who created it?"]
|
|
contexts = [["Python is a programming language created by Guido van Rossum."]]
|
|
predicted_answers = ["Python is a programming language created by George Lucas."]
|
|
evaluator = FaithfulnessEvaluator()
|
|
result = evaluator.run(questions=questions, contexts=contexts, predicted_answers=predicted_answers)
|
|
|
|
required_fields = {"individual_scores", "results", "score"}
|
|
assert all(field in result for field in required_fields)
|
|
nested_required_fields = {"score", "statement_scores", "statements"}
|
|
assert all(field in result["results"][0] for field in nested_required_fields)
|
|
|
|
# assert that metadata is present in the result
|
|
assert "meta" in result
|
|
assert "prompt_tokens" in result["meta"][0]["usage"]
|
|
assert "completion_tokens" in result["meta"][0]["usage"]
|
|
assert "total_tokens" in result["meta"][0]["usage"]
|