haystack/test/components/generators/chat/test_openai_async.py
2025-05-26 16:22:51 +00:00

409 lines
17 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
from unittest.mock import AsyncMock, patch, MagicMock
from openai import AsyncOpenAI, OpenAIError
import pytest
from datetime import datetime
import os
from openai.types.chat import ChatCompletion, ChatCompletionMessage, ChatCompletionMessageToolCall, ChatCompletionChunk
from openai.types.chat.chat_completion import Choice
from openai.types.completion_usage import CompletionTokensDetails, CompletionUsage, PromptTokensDetails
from openai.types.chat.chat_completion_message_tool_call import Function
from openai.types.chat import chat_completion_chunk
from haystack.dataclasses import StreamingChunk
from haystack.utils.auth import Secret
from haystack.dataclasses import ChatMessage, ToolCall
from haystack.tools import Tool
from haystack.components.generators.chat.openai import OpenAIChatGenerator
@pytest.fixture
def chat_messages():
return [
ChatMessage.from_system("You are a helpful assistant"),
ChatMessage.from_user("What's the capital of France"),
]
@pytest.fixture
def mock_chat_completion_chunk_with_tools(openai_mock_stream_async):
"""
Mock the OpenAI API completion chunk response and reuse it for tests
"""
with patch(
"openai.resources.chat.completions.AsyncCompletions.create", new_callable=AsyncMock
) as mock_chat_completion_create:
completion = ChatCompletionChunk(
id="foo",
model="gpt-4",
object="chat.completion.chunk",
choices=[
chat_completion_chunk.Choice(
finish_reason="tool_calls",
logprobs=None,
index=0,
delta=chat_completion_chunk.ChoiceDelta(
role="assistant",
tool_calls=[
chat_completion_chunk.ChoiceDeltaToolCall(
index=0,
id="123",
type="function",
function=chat_completion_chunk.ChoiceDeltaToolCallFunction(
name="weather", arguments='{"city": "Paris"}'
),
)
],
),
)
],
created=int(datetime.now().timestamp()),
usage=None,
)
mock_chat_completion_create.return_value = openai_mock_stream_async(completion)
yield mock_chat_completion_create
@pytest.fixture
def tools():
tool_parameters = {"type": "object", "properties": {"city": {"type": "string"}}, "required": ["city"]}
tool = Tool(
name="weather",
description="useful to determine the weather in a given location",
parameters=tool_parameters,
function=lambda x: x,
)
return [tool]
class TestOpenAIChatGeneratorAsync:
def test_init_should_also_create_async_client_with_same_args(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"),
api_base_url="test-base-url",
organization="test-organization",
timeout=30,
max_retries=5,
)
assert isinstance(component.async_client, AsyncOpenAI)
assert component.async_client.api_key == "test-api-key"
assert component.async_client.organization == "test-organization"
assert component.async_client.base_url == "test-base-url/"
assert component.async_client.timeout == 30
assert component.async_client.max_retries == 5
@pytest.mark.asyncio
async def test_run_async(self, chat_messages, openai_mock_async_chat_completion):
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
response = await component.run_async(chat_messages)
# check that the component returns the correct ChatMessage response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
@pytest.mark.asyncio
async def test_run_with_params_async(self, chat_messages, openai_mock_async_chat_completion):
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), generation_kwargs={"max_tokens": 10, "temperature": 0.5}
)
response = await component.run_async(chat_messages)
# check that the component calls the OpenAI API with the correct parameters
_, kwargs = openai_mock_async_chat_completion.call_args
assert kwargs["max_tokens"] == 10
assert kwargs["temperature"] == 0.5
# check that the tools are not passed to the OpenAI API (the generator is initialized without tools)
assert "tools" not in kwargs
# check that the component returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
@pytest.mark.asyncio
async def test_run_with_params_streaming_async(self, chat_messages, openai_mock_async_chat_completion_chunk):
streaming_callback_called = False
async def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), streaming_callback=streaming_callback
)
response = await component.run_async(chat_messages)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
assert "Hello" in response["replies"][0].text # see openai_mock_chat_completion_chunk
@pytest.mark.asyncio
async def test_run_with_streaming_callback_in_run_method_async(
self, chat_messages, openai_mock_async_chat_completion_chunk
):
streaming_callback_called = False
async def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
response = await component.run_async(chat_messages, streaming_callback=streaming_callback)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
assert "Hello" in response["replies"][0].text # see openai_mock_chat_completion_chunk
@pytest.mark.asyncio
async def test_run_with_tools_async(self, tools):
with patch(
"openai.resources.chat.completions.AsyncCompletions.create", new_callable=AsyncMock
) as mock_chat_completion_create:
completion = ChatCompletion(
id="foo",
model="gpt-4",
object="chat.completion",
choices=[
Choice(
finish_reason="tool_calls",
logprobs=None,
index=0,
message=ChatCompletionMessage(
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
id="123",
type="function",
function=Function(name="weather", arguments='{"city": "Paris"}'),
)
],
),
)
],
created=int(datetime.now().timestamp()),
usage=CompletionUsage(
completion_tokens=40,
prompt_tokens=57,
total_tokens=97,
completion_tokens_details=CompletionTokensDetails(
accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0
),
prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0),
),
)
mock_chat_completion_create.return_value = completion
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"), tools=tools, tools_strict=True)
response = await component.run_async([ChatMessage.from_user("What's the weather like in Paris?")])
# ensure that the tools are passed to the OpenAI API
function_spec = {**tools[0].tool_spec}
function_spec["strict"] = True
function_spec["parameters"]["additionalProperties"] = False
assert mock_chat_completion_create.call_args[1]["tools"] == [{"type": "function", "function": function_spec}]
assert len(response["replies"]) == 1
message = response["replies"][0]
assert not message.texts
assert not message.text
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"
assert message.meta["usage"]["completion_tokens"] == 40
@pytest.mark.asyncio
async def test_run_with_tools_streaming_async(self, mock_chat_completion_chunk_with_tools, tools):
streaming_callback_called = False
async def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(
api_key=Secret.from_token("test-api-key"), streaming_callback=streaming_callback
)
chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")]
response = await component.run_async(chat_messages, tools=tools)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
message = response["replies"][0]
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
@pytest.mark.asyncio
async def test_live_run_async(self):
chat_messages = [ChatMessage.from_user("What's the capital of France")]
component = OpenAIChatGenerator(generation_kwargs={"n": 1})
results = await component.run_async(chat_messages)
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.text
assert "gpt-4o" in message.meta["model"]
assert message.meta["finish_reason"] == "stop"
@pytest.mark.asyncio
async def test_run_with_wrong_model_async(self):
mock_client = MagicMock()
mock_client.chat.completions.create.side_effect = OpenAIError("Invalid model name")
generator = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"), model="something-obviously-wrong")
generator.client = mock_client
with pytest.raises(OpenAIError):
await generator.run_async([ChatMessage.from_user("irrelevant")])
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
@pytest.mark.asyncio
async def test_live_run_streaming_async(self):
counter = 0
responses = ""
async def callback(chunk: StreamingChunk):
nonlocal counter
nonlocal responses
counter += 1
responses += chunk.content if chunk.content else ""
component = OpenAIChatGenerator(
streaming_callback=callback, generation_kwargs={"stream_options": {"include_usage": True}}
)
results = await component.run_async([ChatMessage.from_user("What's the capital of France?")])
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.text
assert "gpt-4o" in message.meta["model"]
assert message.meta["finish_reason"] == "stop"
assert counter > 1
assert "Paris" in responses
# check that the completion_start_time is set and valid ISO format
assert "completion_start_time" in message.meta
assert datetime.fromisoformat(message.meta["completion_start_time"]) <= datetime.now()
assert isinstance(message.meta["usage"], dict)
assert message.meta["usage"]["prompt_tokens"] > 0
assert message.meta["usage"]["completion_tokens"] > 0
assert message.meta["usage"]["total_tokens"] > 0
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
@pytest.mark.asyncio
async def test_live_run_with_tools_async(self, tools):
chat_messages = [ChatMessage.from_user("What's the weather like in Paris?")]
component = OpenAIChatGenerator(tools=tools)
results = await component.run_async(chat_messages)
assert len(results["replies"]) == 1
message = results["replies"][0]
assert not message.texts
assert not message.text
assert message.tool_calls
tool_call = message.tool_call
assert isinstance(tool_call, ToolCall)
assert tool_call.tool_name == "weather"
assert tool_call.arguments == {"city": "Paris"}
assert message.meta["finish_reason"] == "tool_calls"
@pytest.mark.asyncio
async def test_run_with_wrapped_stream_simulation_async(self, chat_messages, openai_mock_stream_async):
streaming_callback_called = False
async def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
assert isinstance(chunk, StreamingChunk)
chunk = ChatCompletionChunk(
id="id",
model="gpt-4",
object="chat.completion.chunk",
choices=[chat_completion_chunk.Choice(index=0, delta=chat_completion_chunk.ChoiceDelta(content="Hello"))],
created=int(datetime.now().timestamp()),
)
# Here we wrap the OpenAI async stream in an AsyncMock
# This is to simulate the behavior of some tools like Weave (https://github.com/wandb/weave)
# which wrap the OpenAI async stream in their own stream
wrapped_openai_async_stream = AsyncMock()
wrapped_openai_async_stream.__aiter__.return_value = iter([chunk])
component = OpenAIChatGenerator(api_key=Secret.from_token("test-api-key"))
# Patch the async client's create method
with patch.object(
component.async_client.chat.completions,
"create",
return_value=wrapped_openai_async_stream,
new_callable=AsyncMock,
) as mock_create:
response = await component.run_async(chat_messages, streaming_callback=streaming_callback)
mock_create.assert_called_once()
assert streaming_callback_called
assert "replies" in response
assert "Hello" in response["replies"][0].text