mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-06-26 22:00:13 +00:00
233 lines
8.4 KiB
Python
233 lines
8.4 KiB
Python
# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
|
||
#
|
||
# SPDX-License-Identifier: Apache-2.0
|
||
|
||
import logging
|
||
|
||
import pytest
|
||
|
||
from haystack import Document
|
||
from haystack.dataclasses import ByteStream, SparseEmbedding
|
||
from haystack.components.preprocessors import DocumentCleaner
|
||
|
||
|
||
class TestDocumentCleaner:
|
||
def test_init(self):
|
||
cleaner = DocumentCleaner()
|
||
assert cleaner.remove_empty_lines is True
|
||
assert cleaner.remove_extra_whitespaces is True
|
||
assert cleaner.remove_repeated_substrings is False
|
||
assert cleaner.remove_substrings is None
|
||
assert cleaner.remove_regex is None
|
||
assert cleaner.keep_id is False
|
||
|
||
def test_non_text_document(self, caplog):
|
||
with caplog.at_level(logging.WARNING):
|
||
cleaner = DocumentCleaner()
|
||
cleaner.run(documents=[Document()])
|
||
assert "DocumentCleaner only cleans text documents but document.content for document ID" in caplog.text
|
||
|
||
def test_single_document(self):
|
||
with pytest.raises(TypeError, match="DocumentCleaner expects a List of Documents as input."):
|
||
cleaner = DocumentCleaner()
|
||
cleaner.run(documents=Document())
|
||
|
||
def test_empty_list(self):
|
||
cleaner = DocumentCleaner()
|
||
result = cleaner.run(documents=[])
|
||
assert result == {"documents": []}
|
||
|
||
def test_remove_empty_lines(self):
|
||
cleaner = DocumentCleaner(remove_extra_whitespaces=False)
|
||
result = cleaner.run(
|
||
documents=[
|
||
Document(
|
||
content="This is a text with some words. \f"
|
||
""
|
||
"There is a second sentence. "
|
||
""
|
||
"And there is a third sentence."
|
||
)
|
||
]
|
||
)
|
||
assert len(result["documents"]) == 1
|
||
assert (
|
||
result["documents"][0].content
|
||
== "This is a text with some words. \fThere is a second sentence. And there is a third sentence."
|
||
)
|
||
|
||
def test_remove_whitespaces(self):
|
||
cleaner = DocumentCleaner(remove_empty_lines=False)
|
||
result = cleaner.run(
|
||
documents=[
|
||
Document(
|
||
content=" This is a text with some words. "
|
||
""
|
||
"There is a second sentence. "
|
||
""
|
||
"And there is a third sentence.\f "
|
||
)
|
||
]
|
||
)
|
||
assert len(result["documents"]) == 1
|
||
assert result["documents"][0].content == (
|
||
"This is a text with some words. There is a second sentence. And there is a third sentence.\f"
|
||
)
|
||
|
||
def test_remove_substrings(self):
|
||
cleaner = DocumentCleaner(remove_substrings=["This", "A", "words", "🪲"])
|
||
result = cleaner.run(documents=[Document(content="This is a text with some words.\f🪲")])
|
||
assert len(result["documents"]) == 1
|
||
assert result["documents"][0].content == " is a text with some .\f"
|
||
|
||
def test_remove_regex(self):
|
||
cleaner = DocumentCleaner(remove_regex=r"\s\s+")
|
||
result = cleaner.run(documents=[Document(content="This is a text \f with some words.")])
|
||
assert len(result["documents"]) == 1
|
||
assert result["documents"][0].content == "This is a text\fwith some words."
|
||
|
||
def test_remove_repeated_substrings(self):
|
||
cleaner = DocumentCleaner(
|
||
remove_empty_lines=False, remove_extra_whitespaces=False, remove_repeated_substrings=True
|
||
)
|
||
|
||
text = """First Page\fThis is a header.
|
||
Page of
|
||
2
|
||
4
|
||
Lorem ipsum dolor sit amet
|
||
This is a footer number 1
|
||
This is footer number 2This is a header.
|
||
Page of
|
||
3
|
||
4
|
||
Sid ut perspiciatis unde
|
||
This is a footer number 1
|
||
This is footer number 2This is a header.
|
||
Page of
|
||
4
|
||
4
|
||
Sed do eiusmod tempor.
|
||
This is a footer number 1
|
||
This is footer number 2"""
|
||
|
||
expected_text = """First Page\f 2
|
||
4
|
||
Lorem ipsum dolor sit amet 3
|
||
4
|
||
Sid ut perspiciatis unde 4
|
||
4
|
||
Sed do eiusmod tempor."""
|
||
result = cleaner.run(documents=[Document(content=text)])
|
||
assert result["documents"][0].content == expected_text
|
||
|
||
def test_copy_metadata(self):
|
||
cleaner = DocumentCleaner()
|
||
documents = [
|
||
Document(content="Text. ", meta={"name": "doc 0"}),
|
||
Document(content="Text. ", meta={"name": "doc 1"}),
|
||
]
|
||
result = cleaner.run(documents=documents)
|
||
assert len(result["documents"]) == 2
|
||
assert result["documents"][0].id != result["documents"][1].id
|
||
for doc, cleaned_doc in zip(documents, result["documents"]):
|
||
assert doc.meta == cleaned_doc.meta
|
||
assert cleaned_doc.content == "Text."
|
||
|
||
def test_keep_id_does_not_alter_document_ids(self):
|
||
cleaner = DocumentCleaner(keep_id=True)
|
||
documents = [Document(content="Text. ", id="1"), Document(content="Text. ", id="2")]
|
||
result = cleaner.run(documents=documents)
|
||
assert len(result["documents"]) == 2
|
||
assert result["documents"][0].id == "1"
|
||
assert result["documents"][1].id == "2"
|
||
|
||
def test_unicode_normalization(self):
|
||
text = """\
|
||
アイウエオ
|
||
Comment ça va
|
||
مرحبا بالعالم
|
||
em Space"""
|
||
|
||
expected_text_NFC = """\
|
||
アイウエオ
|
||
Comment ça va
|
||
مرحبا بالعالم
|
||
em Space"""
|
||
|
||
expected_text_NFD = """\
|
||
アイウエオ
|
||
Comment ça va
|
||
مرحبا بالعالم
|
||
em Space"""
|
||
|
||
expected_text_NFKC = """\
|
||
アイウエオ
|
||
Comment ça va
|
||
مرحبا بالعالم
|
||
em Space"""
|
||
|
||
expected_text_NFKD = """\
|
||
アイウエオ
|
||
Comment ça va
|
||
مرحبا بالعالم
|
||
em Space"""
|
||
|
||
nfc_cleaner = DocumentCleaner(unicode_normalization="NFC", remove_extra_whitespaces=False)
|
||
nfd_cleaner = DocumentCleaner(unicode_normalization="NFD", remove_extra_whitespaces=False)
|
||
nfkc_cleaner = DocumentCleaner(unicode_normalization="NFKC", remove_extra_whitespaces=False)
|
||
nfkd_cleaner = DocumentCleaner(unicode_normalization="NFKD", remove_extra_whitespaces=False)
|
||
|
||
nfc_result = nfc_cleaner.run(documents=[Document(content=text)])
|
||
nfd_result = nfd_cleaner.run(documents=[Document(content=text)])
|
||
nfkc_result = nfkc_cleaner.run(documents=[Document(content=text)])
|
||
nfkd_result = nfkd_cleaner.run(documents=[Document(content=text)])
|
||
|
||
assert nfc_result["documents"][0].content == expected_text_NFC
|
||
assert nfd_result["documents"][0].content == expected_text_NFD
|
||
assert nfkc_result["documents"][0].content == expected_text_NFKC
|
||
assert nfkd_result["documents"][0].content == expected_text_NFKD
|
||
|
||
def test_ascii_only(self):
|
||
text = """\
|
||
アイウエオ
|
||
Comment ça va
|
||
Á
|
||
مرحبا بالعالم
|
||
em Space"""
|
||
|
||
expected_text = """\
|
||
\n\
|
||
Comment ca va
|
||
A
|
||
\n\
|
||
em Space"""
|
||
|
||
cleaner = DocumentCleaner(ascii_only=True, remove_extra_whitespaces=False, remove_empty_lines=False)
|
||
result = cleaner.run(documents=[Document(content=text)])
|
||
assert result["documents"][0].content == expected_text
|
||
|
||
def test_other_document_fields_are_not_lost(self):
|
||
cleaner = DocumentCleaner(keep_id=True)
|
||
document = Document(
|
||
content="This is a text with some words. \nThere is a second sentence. \nAnd there is a third sentence.\n",
|
||
blob=ByteStream.from_string("some_data"),
|
||
meta={"data": 1},
|
||
score=0.1,
|
||
embedding=[0.1, 0.2, 0.3],
|
||
sparse_embedding=SparseEmbedding([0, 2], [0.1, 0.3]),
|
||
)
|
||
res = cleaner.run(documents=[document])
|
||
|
||
assert len(res) == 1
|
||
assert len(res["documents"])
|
||
assert res["documents"][0].id == document.id
|
||
assert res["documents"][0].content == (
|
||
"This is a text with some words. There is a second sentence. And there is a third sentence."
|
||
)
|
||
assert res["documents"][0].blob == document.blob
|
||
assert res["documents"][0].meta == document.meta
|
||
assert res["documents"][0].score == document.score
|
||
assert res["documents"][0].embedding == document.embedding
|
||
assert res["documents"][0].sparse_embedding == document.sparse_embedding
|