haystack/test/components/retrievers/test_in_memory_embedding_retriever.py
2025-05-26 16:22:51 +00:00

169 lines
7.1 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
from typing import Dict, Any
import pytest
from haystack import Pipeline, DeserializationError
from haystack.document_stores.types import FilterPolicy
from haystack.testing.factory import document_store_class
from haystack.components.retrievers.in_memory.embedding_retriever import InMemoryEmbeddingRetriever
from haystack.dataclasses import Document
from haystack.document_stores.in_memory import InMemoryDocumentStore
class TestMemoryEmbeddingRetriever:
def test_init_default(self):
retriever = InMemoryEmbeddingRetriever(InMemoryDocumentStore())
assert retriever.filters is None
assert retriever.top_k == 10
assert retriever.scale_score is False
def test_init_with_parameters(self):
retriever = InMemoryEmbeddingRetriever(
InMemoryDocumentStore(), filters={"name": "test.txt"}, top_k=5, scale_score=True
)
assert retriever.filters == {"name": "test.txt"}
assert retriever.top_k == 5
assert retriever.scale_score
def test_init_with_invalid_top_k_parameter(self):
with pytest.raises(ValueError):
InMemoryEmbeddingRetriever(InMemoryDocumentStore(), top_k=-2)
def test_to_dict(self):
MyFakeStore = document_store_class("MyFakeStore", bases=(InMemoryDocumentStore,))
document_store = MyFakeStore()
document_store.to_dict = lambda: {"type": "test_module.MyFakeStore", "init_parameters": {}}
component = InMemoryEmbeddingRetriever(document_store=document_store)
data = component.to_dict()
assert data == {
"type": "haystack.components.retrievers.in_memory.embedding_retriever.InMemoryEmbeddingRetriever",
"init_parameters": {
"document_store": {"type": "test_module.MyFakeStore", "init_parameters": {}},
"filters": None,
"top_k": 10,
"scale_score": False,
"return_embedding": False,
"filter_policy": "replace",
},
}
def test_to_dict_with_custom_init_parameters(self):
MyFakeStore = document_store_class("MyFakeStore", bases=(InMemoryDocumentStore,))
document_store = MyFakeStore()
document_store.to_dict = lambda: {"type": "test_module.MyFakeStore", "init_parameters": {}}
component = InMemoryEmbeddingRetriever(
document_store=document_store,
filters={"name": "test.txt"},
top_k=5,
scale_score=True,
return_embedding=True,
)
data = component.to_dict()
assert data == {
"type": "haystack.components.retrievers.in_memory.embedding_retriever.InMemoryEmbeddingRetriever",
"init_parameters": {
"document_store": {"type": "test_module.MyFakeStore", "init_parameters": {}},
"filters": {"name": "test.txt"},
"top_k": 5,
"scale_score": True,
"return_embedding": True,
"filter_policy": "replace",
},
}
def test_from_dict(self):
data = {
"type": "haystack.components.retrievers.in_memory.embedding_retriever.InMemoryEmbeddingRetriever",
"init_parameters": {
"document_store": {
"type": "haystack.document_stores.in_memory.document_store.InMemoryDocumentStore",
"init_parameters": {},
},
"filters": {"name": "test.txt"},
"top_k": 5,
"filter_policy": "merge",
},
}
component = InMemoryEmbeddingRetriever.from_dict(data)
assert isinstance(component.document_store, InMemoryDocumentStore)
assert component.filters == {"name": "test.txt"}
assert component.top_k == 5
assert component.scale_score is False
assert component.filter_policy == FilterPolicy.MERGE
def test_from_dict_without_docstore(self):
data = {
"type": "haystack.components.retrievers.in_memory.embedding_retriever.InMemoryEmbeddingRetriever",
"init_parameters": {},
}
with pytest.raises(DeserializationError, match="Missing 'document_store' in serialization data"):
InMemoryEmbeddingRetriever.from_dict(data)
def test_from_dict_without_docstore_type(self):
data = {
"type": "haystack.components.retrievers.in_memory.embedding_retriever.InMemoryEmbeddingRetriever",
"init_parameters": {"document_store": {"init_parameters": {}}},
}
with pytest.raises(DeserializationError):
InMemoryEmbeddingRetriever.from_dict(data)
def test_from_dict_nonexisting_docstore(self):
data = {
"type": "haystack.components.retrievers.in_memory.embedding_retriever.InMemoryEmbeddingRetriever",
"init_parameters": {"document_store": {"type": "Nonexisting.Docstore", "init_parameters": {}}},
}
with pytest.raises(DeserializationError):
InMemoryEmbeddingRetriever.from_dict(data)
def test_valid_run(self):
top_k = 3
ds = InMemoryDocumentStore(embedding_similarity_function="cosine")
docs = [
Document(content="my document", embedding=[0.1, 0.2, 0.3, 0.4]),
Document(content="another document", embedding=[1.0, 1.0, 1.0, 1.0]),
Document(content="third document", embedding=[0.5, 0.7, 0.5, 0.7]),
]
ds.write_documents(docs)
retriever = InMemoryEmbeddingRetriever(ds, top_k=top_k)
result = retriever.run(query_embedding=[0.1, 0.1, 0.1, 0.1], return_embedding=True)
assert "documents" in result
assert len(result["documents"]) == top_k
assert result["documents"][0].embedding == [1.0, 1.0, 1.0, 1.0]
def test_invalid_run_wrong_store_type(self):
SomeOtherDocumentStore = document_store_class("SomeOtherDocumentStore")
with pytest.raises(ValueError, match="document_store must be an instance of InMemoryDocumentStore"):
InMemoryEmbeddingRetriever(SomeOtherDocumentStore())
@pytest.mark.integration
def test_run_with_pipeline(self):
ds = InMemoryDocumentStore(embedding_similarity_function="cosine")
top_k = 2
docs = [
Document(content="my document", embedding=[0.1, 0.2, 0.3, 0.4]),
Document(content="another document", embedding=[1.0, 1.0, 1.0, 1.0]),
Document(content="third document", embedding=[0.5, 0.7, 0.5, 0.7]),
]
ds.write_documents(docs)
retriever = InMemoryEmbeddingRetriever(ds, top_k=top_k)
pipeline = Pipeline()
pipeline.add_component("retriever", retriever)
result: Dict[str, Any] = pipeline.run(
data={"retriever": {"query_embedding": [0.1, 0.1, 0.1, 0.1], "return_embedding": True}}
)
assert result
assert "retriever" in result
results_docs = result["retriever"]["documents"]
assert results_docs
assert len(results_docs) == top_k
assert results_docs[0].embedding == [1.0, 1.0, 1.0, 1.0]