haystack/test/components/retrievers/test_sentence_window_retriever.py
2025-05-26 16:22:51 +00:00

227 lines
10 KiB
Python

# SPDX-FileCopyrightText: 2022-present deepset GmbH <info@deepset.ai>
#
# SPDX-License-Identifier: Apache-2.0
import pytest
from haystack import DeserializationError, Document, Pipeline
from haystack.components.preprocessors import DocumentSplitter
from haystack.components.retrievers import InMemoryBM25Retriever
from haystack.components.retrievers.sentence_window_retriever import SentenceWindowRetriever
from haystack.document_stores.in_memory import InMemoryDocumentStore
class TestSentenceWindowRetriever:
def test_init_default(self):
retriever = SentenceWindowRetriever(InMemoryDocumentStore())
assert retriever.window_size == 3
def test_init_with_parameters(self):
retriever = SentenceWindowRetriever(InMemoryDocumentStore(), window_size=5)
assert retriever.window_size == 5
def test_init_with_invalid_window_size_parameter(self):
with pytest.raises(ValueError):
SentenceWindowRetriever(InMemoryDocumentStore(), window_size=-2)
def test_merge_documents(self):
docs = [
{
"id": "doc_0",
"content": "This is a text with some words. There is a ",
"source_id": "c5d7c632affc486d0cfe7b3c0f4dc1d3896ea720da2b538d6d10b104a3df5f99",
"page_number": 1,
"split_id": 0,
"split_idx_start": 0,
"_split_overlap": [{"doc_id": "doc_1", "range": (0, 23)}],
},
{
"id": "doc_1",
"content": "some words. There is a second sentence. And there is ",
"source_id": "c5d7c632affc486d0cfe7b3c0f4dc1d3896ea720da2b538d6d10b104a3df5f99",
"page_number": 1,
"split_id": 1,
"split_idx_start": 20,
"_split_overlap": [{"doc_id": "doc_0", "range": (20, 43)}, {"doc_id": "doc_2", "range": (0, 29)}],
},
{
"id": "doc_2",
"content": "second sentence. And there is also a third sentence",
"source_id": "c5d7c632affc486d0cfe7b3c0f4dc1d3896ea720da2b538d6d10b104a3df5f99",
"page_number": 1,
"split_id": 2,
"split_idx_start": 43,
"_split_overlap": [{"doc_id": "doc_1", "range": (23, 52)}],
},
]
merged_text = SentenceWindowRetriever.merge_documents_text([Document.from_dict(doc) for doc in docs])
expected = "This is a text with some words. There is a second sentence. And there is also a third sentence"
assert merged_text == expected
def test_to_dict(self):
window_retriever = SentenceWindowRetriever(InMemoryDocumentStore())
data = window_retriever.to_dict()
assert data["type"] == "haystack.components.retrievers.sentence_window_retriever.SentenceWindowRetriever"
assert data["init_parameters"]["window_size"] == 3
assert (
data["init_parameters"]["document_store"]["type"]
== "haystack.document_stores.in_memory.document_store.InMemoryDocumentStore"
)
def test_from_dict(self):
data = {
"type": "haystack.components.retrievers.sentence_window_retriever.SentenceWindowRetriever",
"init_parameters": {
"document_store": {
"type": "haystack.document_stores.in_memory.document_store.InMemoryDocumentStore",
"init_parameters": {},
},
"window_size": 5,
},
}
component = SentenceWindowRetriever.from_dict(data)
assert isinstance(component.document_store, InMemoryDocumentStore)
assert component.window_size == 5
def test_from_dict_without_docstore(self):
data = {"type": "SentenceWindowRetriever", "init_parameters": {}}
with pytest.raises(DeserializationError, match="Missing 'document_store' in serialization data"):
SentenceWindowRetriever.from_dict(data)
def test_from_dict_without_docstore_type(self):
data = {"type": "SentenceWindowRetriever", "init_parameters": {"document_store": {"init_parameters": {}}}}
with pytest.raises(DeserializationError):
SentenceWindowRetriever.from_dict(data)
def test_from_dict_non_existing_docstore(self):
data = {
"type": "SentenceWindowRetriever",
"init_parameters": {"document_store": {"type": "Nonexisting.Docstore", "init_parameters": {}}},
}
with pytest.raises(DeserializationError):
SentenceWindowRetriever.from_dict(data)
def test_document_without_split_id(self):
docs = [
Document(content="This is a text with some words. There is a ", meta={"id": "doc_0"}),
Document(content="some words. There is a second sentence. And there is ", meta={"id": "doc_1"}),
]
with pytest.raises(ValueError):
retriever = SentenceWindowRetriever(document_store=InMemoryDocumentStore(), window_size=3)
retriever.run(retrieved_documents=docs)
def test_document_without_source_id(self):
docs = [
Document(content="This is a text with some words. There is a ", meta={"id": "doc_0", "split_id": 0}),
Document(
content="some words. There is a second sentence. And there is ", meta={"id": "doc_1", "split_id": 1}
),
]
with pytest.raises(ValueError):
retriever = SentenceWindowRetriever(document_store=InMemoryDocumentStore(), window_size=3)
retriever.run(retrieved_documents=docs)
def test_run_invalid_window_size(self):
docs = [Document(content="This is a text with some words. There is a ", meta={"id": "doc_0", "split_id": 0})]
with pytest.raises(ValueError):
retriever = SentenceWindowRetriever(document_store=InMemoryDocumentStore(), window_size=0)
retriever.run(retrieved_documents=docs)
def test_constructor_parameter_does_not_change(self):
retriever = SentenceWindowRetriever(InMemoryDocumentStore(), window_size=5)
assert retriever.window_size == 5
doc = {
"id": "doc_0",
"content": "This is a text with some words. There is a ",
"source_id": "c5d7c632affc486d0cfe7b3c0f4dc1d3896ea720da2b538d6d10b104a3df5f99",
"page_number": 1,
"split_id": 0,
"split_idx_start": 0,
"_split_overlap": [{"doc_id": "doc_1", "range": (0, 23)}],
}
retriever.run(retrieved_documents=[Document.from_dict(doc)], window_size=1)
assert retriever.window_size == 5
def test_context_documents_returned_are_ordered_by_split_idx_start(self):
docs = []
accumulated_length = 0
for sent in range(10):
content = f"Sentence {sent}."
docs.append(
Document(
content=content,
meta={
"id": f"doc_{sent}",
"split_idx_start": accumulated_length,
"source_id": "source1",
"split_id": sent,
},
)
)
accumulated_length += len(content)
import random
random.shuffle(docs)
doc_store = InMemoryDocumentStore()
doc_store.write_documents(docs)
retriever = SentenceWindowRetriever(document_store=doc_store, window_size=3)
# run the retriever with a document whose content = "Sentence 4."
result = retriever.run(retrieved_documents=[doc for doc in docs if doc.content == "Sentence 4."])
# assert that the context documents are in the correct order
assert len(result["context_documents"]) == 7
assert [doc.meta["split_idx_start"] for doc in result["context_documents"]] == [11, 22, 33, 44, 55, 66, 77]
@pytest.mark.integration
def test_run_with_pipeline(self):
splitter = DocumentSplitter(split_length=1, split_overlap=0, split_by="period")
text = (
"This is a text with some words. There is a second sentence. And there is also a third sentence. "
"It also contains a fourth sentence. And a fifth sentence. And a sixth sentence. And a seventh sentence"
)
doc = Document(content=text)
docs = splitter.run([doc])
doc_store = InMemoryDocumentStore()
doc_store.write_documents(docs["documents"])
pipe = Pipeline()
pipe.add_component("bm25_retriever", InMemoryBM25Retriever(doc_store, top_k=1))
pipe.add_component(
"sentence_window_retriever", SentenceWindowRetriever(document_store=doc_store, window_size=2)
)
pipe.connect("bm25_retriever", "sentence_window_retriever")
result = pipe.run({"bm25_retriever": {"query": "third"}})
assert result["sentence_window_retriever"]["context_windows"] == [
"This is a text with some words. There is a second sentence. And there is also a third sentence. "
"It also contains a fourth sentence. And a fifth sentence."
]
assert len(result["sentence_window_retriever"]["context_documents"]) == 5
result = pipe.run({"bm25_retriever": {"query": "third"}, "sentence_window_retriever": {"window_size": 1}})
assert result["sentence_window_retriever"]["context_windows"] == [
" There is a second sentence. And there is also a third sentence. It also contains a fourth sentence."
]
assert len(result["sentence_window_retriever"]["context_documents"]) == 3
@pytest.mark.integration
def test_serialization_deserialization_in_pipeline(self):
doc_store = InMemoryDocumentStore()
pipe = Pipeline()
pipe.add_component("bm25_retriever", InMemoryBM25Retriever(doc_store, top_k=1))
pipe.add_component(
"sentence_window_retriever", SentenceWindowRetriever(document_store=doc_store, window_size=2)
)
pipe.connect("bm25_retriever", "sentence_window_retriever")
serialized = pipe.to_dict()
deserialized = Pipeline.from_dict(serialized)
assert deserialized == pipe