sahusiddharth dbdeb8259e
feat: rename model_name or model_name_or_path to model in generators (#6715)
* renamed model_name or model_name_or_path to model

* added release notes

* Update releasenotes/notes/renamed-model_name-or-model_name_or_path-to-model-184490cbb66c4d7c.yaml

---------

Co-authored-by: ZanSara <sara.zanzottera@deepset.ai>
2024-01-12 12:58:01 +01:00

257 lines
10 KiB
Python

import os
import pytest
from openai import OpenAIError
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.generators.utils import default_streaming_callback
from haystack.dataclasses import ChatMessage, StreamingChunk
@pytest.fixture
def chat_messages():
return [
ChatMessage.from_system("You are a helpful assistant"),
ChatMessage.from_user("What's the capital of France"),
]
class TestOpenAIChatGenerator:
def test_init_default(self):
component = OpenAIChatGenerator(api_key="test-api-key")
assert component.client.api_key == "test-api-key"
assert component.model == "gpt-3.5-turbo"
assert component.streaming_callback is None
assert not component.generation_kwargs
def test_init_fail_wo_api_key(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
with pytest.raises(OpenAIError):
OpenAIChatGenerator()
def test_init_with_parameters(self):
component = OpenAIChatGenerator(
api_key="test-api-key",
model="gpt-4",
streaming_callback=default_streaming_callback,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
assert component.client.api_key == "test-api-key"
assert component.model == "gpt-4"
assert component.streaming_callback is default_streaming_callback
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
def test_to_dict_default(self):
component = OpenAIChatGenerator(api_key="test-api-key")
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"model": "gpt-3.5-turbo",
"organization": None,
"streaming_callback": None,
"api_base_url": None,
"generation_kwargs": {},
},
}
def test_to_dict_with_parameters(self):
component = OpenAIChatGenerator(
api_key="test-api-key",
model="gpt-4",
streaming_callback=default_streaming_callback,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"model": "gpt-4",
"organization": None,
"api_base_url": "test-base-url",
"streaming_callback": "haystack.components.generators.utils.default_streaming_callback",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
def test_to_dict_with_lambda_streaming_callback(self):
component = OpenAIChatGenerator(
api_key="test-api-key",
model="gpt-4",
streaming_callback=lambda x: x,
api_base_url="test-base-url",
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"model": "gpt-4",
"organization": None,
"api_base_url": "test-base-url",
"streaming_callback": "chat.test_openai.<lambda>",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
def test_from_dict(self):
data = {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"model": "gpt-4",
"api_base_url": "test-base-url",
"streaming_callback": "haystack.components.generators.utils.default_streaming_callback",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
component = OpenAIChatGenerator.from_dict(data)
assert component.model == "gpt-4"
assert component.streaming_callback is default_streaming_callback
assert component.api_base_url == "test-base-url"
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
def test_from_dict_fail_wo_env_var(self, monkeypatch):
monkeypatch.delenv("OPENAI_API_KEY", raising=False)
data = {
"type": "haystack.components.generators.chat.openai.OpenAIChatGenerator",
"init_parameters": {
"model": "gpt-4",
"organization": None,
"api_base_url": "test-base-url",
"streaming_callback": "haystack.components.generators.utils.default_streaming_callback",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
},
}
with pytest.raises(OpenAIError):
OpenAIChatGenerator.from_dict(data)
def test_run(self, chat_messages, mock_chat_completion):
component = OpenAIChatGenerator()
response = component.run(chat_messages)
# check that the component returns the correct ChatMessage response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
def test_run_with_params(self, chat_messages, mock_chat_completion):
component = OpenAIChatGenerator(generation_kwargs={"max_tokens": 10, "temperature": 0.5})
response = component.run(chat_messages)
# check that the component calls the OpenAI API with the correct parameters
_, kwargs = mock_chat_completion.call_args
assert kwargs["max_tokens"] == 10
assert kwargs["temperature"] == 0.5
# check that the component returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
def test_run_with_params_streaming(self, chat_messages, mock_chat_completion_chunk):
streaming_callback_called = False
def streaming_callback(chunk: StreamingChunk) -> None:
nonlocal streaming_callback_called
streaming_callback_called = True
component = OpenAIChatGenerator(streaming_callback=streaming_callback)
response = component.run(chat_messages)
# check we called the streaming callback
assert streaming_callback_called
# check that the component still returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]
assert "Hello" in response["replies"][0].content # see mock_chat_completion_chunk
def test_check_abnormal_completions(self, caplog):
component = OpenAIChatGenerator(api_key="test-api-key")
messages = [
ChatMessage.from_assistant(
"", meta={"finish_reason": "content_filter" if i % 2 == 0 else "length", "index": i}
)
for i, _ in enumerate(range(4))
]
for m in messages:
component._check_finish_reason(m)
# check truncation warning
message_template = (
"The completion for index {index} has been truncated before reaching a natural stopping point. "
"Increase the max_tokens parameter to allow for longer completions."
)
for index in [1, 3]:
assert caplog.records[index].message == message_template.format(index=index)
# check content filter warning
message_template = "The completion for index {index} has been truncated due to the content filter."
for index in [0, 2]:
assert caplog.records[index].message == message_template.format(index=index)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run(self):
chat_messages = [ChatMessage.from_user("What's the capital of France")]
component = OpenAIChatGenerator(api_key=os.environ.get("OPENAI_API_KEY"), generation_kwargs={"n": 1})
results = component.run(chat_messages)
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.content
assert "gpt-3.5" in message.meta["model"]
assert message.meta["finish_reason"] == "stop"
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_wrong_model(self, chat_messages):
component = OpenAIChatGenerator(model="something-obviously-wrong", api_key=os.environ.get("OPENAI_API_KEY"))
with pytest.raises(OpenAIError):
component.run(chat_messages)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
@pytest.mark.integration
def test_live_run_streaming(self):
class Callback:
def __init__(self):
self.responses = ""
self.counter = 0
def __call__(self, chunk: StreamingChunk) -> None:
self.counter += 1
self.responses += chunk.content if chunk.content else ""
callback = Callback()
component = OpenAIChatGenerator(streaming_callback=callback)
results = component.run([ChatMessage.from_user("What's the capital of France?")])
assert len(results["replies"]) == 1
message: ChatMessage = results["replies"][0]
assert "Paris" in message.content
assert "gpt-3.5" in message.meta["model"]
assert message.meta["finish_reason"] == "stop"
assert callback.counter > 1
assert "Paris" in callback.responses