haystack/test/others/test_schema.py
Sara Zan 584e046642
AnswerToSpeech (#2584)
* Add new audio answer primitives

* Add AnswerToSpeech

* Add dependency group

* Update Documentation & Code Style

* Extract TextToSpeech in a helper class, create DocumentToSpeech and primitives

* Add tests

* Update Documentation & Code Style

* Add ability to compress audio and more tests

* Add audio group to test, all and all-gpu

* fix pylint

* Update Documentation & Code Style

* Accidental git tag

* Try pleasing mypy

* Update Documentation & Code Style

* fix pylint

* Add warning for missing OS library and support in CI

* Try fixing mypy

* Update Documentation & Code Style

* Add docs, simplify args for audio nodes and add tutorials

* Fix mypy

* Fix run_batch

* Feedback on tutorials

* fix mypy and pylint

* Fix mypy again

* Fix mypy yet again

* Fix the ci

* Fix dicts merge and install ffmpeg on CI

* Make the audio nodes import safe

* Trying to increase tolerance in audio test

* Fix import paths

* fix linter

* Update Documentation & Code Style

* Add audio libs in unit tests

* Update _text_to_speech.py

* Update answer_to_speech.py

* Use dedicated dataset & update telemetry

* Remove  and use distilled roberta

* Revert special primitives so that the nodes run in indexing

* Improve tutorials and fix smaller bugs

* Update Documentation & Code Style

* Fix serialization issue

* Update Documentation & Code Style

* Improve tutorial

* Update Documentation & Code Style

* Update _text_to_speech.py

* Minor lg updates

* Minor lg updates to tutorial

* Making indexing work in tutorials

* Update Documentation & Code Style

* Improve docstrings

* Try to use GPU when available

* Update Documentation & Code Style

* Fixi mypy and pylint

* Try to pass the device correctly

* Update Documentation & Code Style

* Use type of device

* use .cpu()

* Improve .ipynb

* update apt index to be able to download libsndfile1

* Fix SpeechDocument.from_dict()

* Change pip URL

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: Agnieszka Marzec <97166305+agnieszka-m@users.noreply.github.com>
2022-06-15 10:13:18 +02:00

294 lines
9.2 KiB
Python

from haystack.schema import Document, Label, Answer, Span, MultiLabel, SpeechDocument, SpeechAnswer
import pytest
import numpy as np
from ..conftest import SAMPLES_PATH
LABELS = [
Label(
query="some",
answer=Answer(
answer="an answer",
type="extractive",
score=0.1,
document_id="123",
offsets_in_document=[Span(start=1, end=3)],
),
document=Document(content="some text", content_type="text"),
is_correct_answer=True,
is_correct_document=True,
origin="user-feedback",
),
Label(
query="some",
answer=Answer(answer="annother answer", type="extractive", score=0.1, document_id="123"),
document=Document(content="some text", content_type="text"),
is_correct_answer=True,
is_correct_document=True,
origin="user-feedback",
),
Label(
query="some",
answer=Answer(
answer="an answer",
type="extractive",
score=0.1,
document_id="123",
offsets_in_document=[Span(start=1, end=3)],
),
document=Document(content="some text", content_type="text"),
is_correct_answer=True,
is_correct_document=True,
origin="user-feedback",
),
]
def test_no_answer_label():
labels = [
Label(
query="question",
answer=Answer(answer=""),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
origin="gold-label",
),
Label(
query="question",
answer=Answer(answer=""),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
no_answer=True,
origin="gold-label",
),
Label(
query="question",
answer=Answer(answer="some"),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
origin="gold-label",
),
Label(
query="question",
answer=Answer(answer="some"),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
no_answer=False,
origin="gold-label",
),
]
assert labels[0].no_answer == True
assert labels[1].no_answer == True
assert labels[2].no_answer == False
assert labels[3].no_answer == False
def test_equal_label():
assert LABELS[2] == LABELS[0]
assert LABELS[1] != LABELS[0]
def test_answer_to_json():
a = Answer(
answer="an answer",
type="extractive",
score=0.1,
context="abc",
offsets_in_document=[Span(start=1, end=10)],
offsets_in_context=[Span(start=3, end=5)],
document_id="123",
)
j = a.to_json()
assert type(j) == str
assert len(j) > 30
a_new = Answer.from_json(j)
assert type(a_new.offsets_in_document[0]) == Span
assert a_new == a
def test_answer_to_dict():
a = Answer(
answer="an answer",
type="extractive",
score=0.1,
context="abc",
offsets_in_document=[Span(start=1, end=10)],
offsets_in_context=[Span(start=3, end=5)],
document_id="123",
)
j = a.to_dict()
assert type(j) == dict
a_new = Answer.from_dict(j)
assert type(a_new.offsets_in_document[0]) == Span
assert a_new == a
def test_label_to_json():
j0 = LABELS[0].to_json()
l_new = Label.from_json(j0)
assert l_new == LABELS[0]
def test_label_to_json():
j0 = LABELS[0].to_json()
l_new = Label.from_json(j0)
assert l_new == LABELS[0]
assert l_new.answer.offsets_in_document[0].start == 1
def test_label_to_dict():
j0 = LABELS[0].to_dict()
l_new = Label.from_dict(j0)
assert l_new == LABELS[0]
assert l_new.answer.offsets_in_document[0].start == 1
def test_doc_to_json():
# With embedding
d = Document(
content="some text",
content_type="text",
score=0.99988,
meta={"name": "doc1"},
embedding=np.random.rand(768).astype(np.float32),
)
j0 = d.to_json()
d_new = Document.from_json(j0)
assert d == d_new
# No embedding
d = Document(content="some text", content_type="text", score=0.99988, meta={"name": "doc1"}, embedding=None)
j0 = d.to_json()
d_new = Document.from_json(j0)
assert d == d_new
def test_answer_postinit():
a = Answer(answer="test", offsets_in_document=[{"start": 10, "end": 20}])
assert a.meta == {}
assert isinstance(a.offsets_in_document[0], Span)
def test_generate_doc_id_using_text():
text1 = "text1"
text2 = "text2"
doc1_text1 = Document(content=text1, meta={"name": "doc1"})
doc2_text1 = Document(content=text1, meta={"name": "doc2"})
doc3_text2 = Document(content=text2, meta={"name": "doc3"})
assert doc1_text1.id == doc2_text1.id
assert doc1_text1.id != doc3_text2.id
def test_generate_doc_id_using_custom_list():
text1 = "text1"
text2 = "text2"
doc1_meta1_id_by_content = Document(content=text1, meta={"name": "doc1"}, id_hash_keys=["content"])
doc1_meta2_id_by_content = Document(content=text1, meta={"name": "doc2"}, id_hash_keys=["content"])
assert doc1_meta1_id_by_content.id == doc1_meta2_id_by_content.id
doc1_meta1_id_by_content_and_meta = Document(content=text1, meta={"name": "doc1"}, id_hash_keys=["content", "meta"])
doc1_meta2_id_by_content_and_meta = Document(content=text1, meta={"name": "doc2"}, id_hash_keys=["content", "meta"])
assert doc1_meta1_id_by_content_and_meta.id != doc1_meta2_id_by_content_and_meta.id
doc1_text1 = Document(content=text1, meta={"name": "doc1"}, id_hash_keys=["content"])
doc3_text2 = Document(content=text2, meta={"name": "doc3"}, id_hash_keys=["content"])
assert doc1_text1.id != doc3_text2.id
with pytest.raises(ValueError):
_ = Document(content=text1, meta={"name": "doc1"}, id_hash_keys=["content", "non_existing_field"])
def test_aggregate_labels_with_labels():
label1_with_filter1 = Label(
query="question",
answer=Answer(answer="1"),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
origin="gold-label",
filters={"name": ["filename1"]},
)
label2_with_filter1 = Label(
query="question",
answer=Answer(answer="2"),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
origin="gold-label",
filters={"name": ["filename1"]},
)
label3_with_filter2 = Label(
query="question",
answer=Answer(answer="2"),
is_correct_answer=True,
is_correct_document=True,
document=Document(content="some", id="777"),
origin="gold-label",
filters={"name": ["filename2"]},
)
label = MultiLabel(labels=[label1_with_filter1, label2_with_filter1])
assert label.filters == {"name": ["filename1"]}
with pytest.raises(ValueError):
label = MultiLabel(labels=[label1_with_filter1, label3_with_filter2])
def test_serialize_speech_document():
speech_doc = SpeechDocument(
id=12345,
content_type="audio",
content="this is the content of the document",
content_audio=SAMPLES_PATH / "audio" / "this is the content of the document.wav",
meta={"some": "meta"},
)
speech_doc_dict = speech_doc.to_dict()
assert speech_doc_dict["content"] == "this is the content of the document"
assert speech_doc_dict["content_audio"] == str(
(SAMPLES_PATH / "audio" / "this is the content of the document.wav").absolute()
)
def test_deserialize_speech_document():
speech_doc = SpeechDocument(
id=12345,
content_type="audio",
content="this is the content of the document",
content_audio=SAMPLES_PATH / "audio" / "this is the content of the document.wav",
meta={"some": "meta"},
)
assert speech_doc == SpeechDocument.from_dict(speech_doc.to_dict())
def test_serialize_speech_answer():
speech_answer = SpeechAnswer(
answer="answer",
answer_audio=SAMPLES_PATH / "audio" / "answer.wav",
context="the context for this answer is here",
context_audio=SAMPLES_PATH / "audio" / "the context for this answer is here.wav",
)
speech_answer_dict = speech_answer.to_dict()
assert speech_answer_dict["answer"] == "answer"
assert speech_answer_dict["answer_audio"] == str((SAMPLES_PATH / "audio" / "answer.wav").absolute())
assert speech_answer_dict["context"] == "the context for this answer is here"
assert speech_answer_dict["context_audio"] == str(
(SAMPLES_PATH / "audio" / "the context for this answer is here.wav").absolute()
)
def test_deserialize_speech_answer():
speech_answer = SpeechAnswer(
answer="answer",
answer_audio=SAMPLES_PATH / "audio" / "answer.wav",
context="the context for this answer is here",
context_audio=SAMPLES_PATH / "audio" / "the context for this answer is here.wav",
)
assert speech_answer == SpeechAnswer.from_dict(speech_answer.to_dict())