haystack/test/nodes/test_document_classifier.py
2022-09-27 13:25:34 +02:00

142 lines
5.6 KiB
Python

import pytest
from haystack.schema import Document
from haystack.nodes.document_classifier.base import BaseDocumentClassifier
@pytest.mark.integration
def test_document_classifier(document_classifier):
assert isinstance(document_classifier, BaseDocumentClassifier)
docs = [
Document(
content="""That's good. I like it.""" * 700, # extra long text to check truncation
meta={"name": "0"},
id="1",
),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = document_classifier.predict(documents=docs)
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(results):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.integration
def test_document_classifier_details(document_classifier):
docs = [Document(content="""That's good. I like it."""), Document(content="""That's bad. I don't like it.""")]
results = document_classifier.predict(documents=docs)
for doc in results:
assert "details" in doc.meta["classification"]
if document_classifier.top_k is not None:
assert len(doc.meta["classification"]["details"]) == document_classifier.top_k
@pytest.mark.integration
def test_document_classifier_batch_single_doc_list(document_classifier):
docs = [
Document(content="""That's good. I like it.""", meta={"name": "0"}, id="1"),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = document_classifier.predict_batch(documents=docs)
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(results):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.integration
def test_document_classifier_batch_multiple_doc_lists(document_classifier):
docs = [
Document(content="""That's good. I like it.""", meta={"name": "0"}, id="1"),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = document_classifier.predict_batch(documents=[docs, docs])
assert len(results) == 2 # 2 Document lists
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(results[0]):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.integration
def test_zero_shot_document_classifier(zero_shot_document_classifier):
assert isinstance(zero_shot_document_classifier, BaseDocumentClassifier)
docs = [
Document(
content="""That's good. I like it.""" * 700, # extra long text to check truncation
meta={"name": "0"},
id="1",
),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = zero_shot_document_classifier.predict(documents=docs)
expected_labels = ["positive", "negative"]
for i, doc in enumerate(results):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.integration
def test_zero_shot_document_classifier_details(zero_shot_document_classifier):
docs = [Document(content="""That's good. I like it."""), Document(content="""That's bad. I don't like it.""")]
results = zero_shot_document_classifier.predict(documents=docs)
for doc in results:
assert "details" in doc.meta["classification"]
assert set(doc.meta["classification"]["details"].keys()) == set(zero_shot_document_classifier.labels)
@pytest.mark.integration
def test_document_classifier_batch_size(batched_document_classifier):
assert isinstance(batched_document_classifier, BaseDocumentClassifier)
docs = [
Document(
content="""That's good. I like it.""" * 700, # extra long text to check truncation
meta={"name": "0"},
id="1",
),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
results = batched_document_classifier.predict(documents=docs)
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(results):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.integration
def test_document_classifier_as_index_node(indexing_document_classifier):
assert isinstance(indexing_document_classifier, BaseDocumentClassifier)
docs = [
{
"content": """That's good. I like it.""" * 700, # extra long text to check truncation
"meta": {"name": "0"},
"id": "1",
"class_field": "That's bad.",
},
{"content": """That's bad. I like it.""", "meta": {"name": "1"}, "id": "2", "class_field": "That's good."},
]
output, output_name = indexing_document_classifier.run(documents=docs, root_node="File")
expected_labels = ["sadness", "joy"]
for i, doc in enumerate(output["documents"]):
assert doc["meta"]["classification"]["label"] == expected_labels[i]
@pytest.mark.integration
def test_document_classifier_as_query_node(document_classifier):
assert isinstance(document_classifier, BaseDocumentClassifier)
docs = [
Document(
content="""That's good. I like it.""" * 700, # extra long text to check truncation
meta={"name": "0"},
id="1",
),
Document(content="""That's bad. I don't like it.""", meta={"name": "1"}, id="2"),
]
output, output_name = document_classifier.run(documents=docs, root_node="Query")
expected_labels = ["joy", "sadness"]
for i, doc in enumerate(output["documents"]):
assert doc.to_dict()["meta"]["classification"]["label"] == expected_labels[i]