mirror of
				https://github.com/deepset-ai/haystack.git
				synced 2025-10-31 01:39:45 +00:00 
			
		
		
		
	 65cf9547d2
			
		
	
	
		65cf9547d2
		
			
		
	
	
	
	
		
			
			* Update config.py * new option Allow a new option from the settings : tell is a reader model can return a "no answer" like SQuAD2.0 models, or if it's only a SQuAD1.0-like model, always giving an answer.
		
			
				
	
	
		
			212 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			212 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| import logging
 | |
| import time
 | |
| from datetime import datetime
 | |
| from typing import Any, Dict, List, Optional
 | |
| 
 | |
| import elasticapm
 | |
| from fastapi import APIRouter
 | |
| from fastapi import HTTPException
 | |
| 
 | |
| from haystack import Finder
 | |
| from rest_api.config import DB_HOST, DB_PORT, DB_USER, DB_PW, DB_INDEX, DEFAULT_TOP_K_READER, ES_CONN_SCHEME, \
 | |
|     TEXT_FIELD_NAME, SEARCH_FIELD_NAME, EMBEDDING_DIM, EMBEDDING_FIELD_NAME, EXCLUDE_META_DATA_FIELDS, \
 | |
|     RETRIEVER_TYPE, EMBEDDING_MODEL_PATH, USE_GPU, READER_MODEL_PATH, BATCHSIZE, CONTEXT_WINDOW_SIZE, \
 | |
|     TOP_K_PER_CANDIDATE, NO_ANS_BOOST, READER_CAN_HAVE_NO_ANSWER, MAX_PROCESSES, MAX_SEQ_LEN, DOC_STRIDE, CONCURRENT_REQUEST_PER_WORKER, \
 | |
|     FAQ_QUESTION_FIELD_NAME, EMBEDDING_MODEL_FORMAT, READER_TYPE, READER_TOKENIZER, GPU_NUMBER, NAME_FIELD_NAME, \
 | |
|     VECTOR_SIMILARITY_METRIC, CREATE_INDEX, LOG_LEVEL
 | |
| 
 | |
| from rest_api.controller.request import Question
 | |
| from rest_api.controller.response import Answers, AnswersToIndividualQuestion
 | |
| 
 | |
| from rest_api.controller.utils import RequestLimiter
 | |
| from haystack.document_store.elasticsearch import ElasticsearchDocumentStore
 | |
| from haystack.reader.base import BaseReader
 | |
| from haystack.reader.farm import FARMReader
 | |
| from haystack.reader.transformers import TransformersReader
 | |
| from haystack.retriever.base import BaseRetriever
 | |
| from haystack.retriever.sparse import ElasticsearchRetriever, ElasticsearchFilterOnlyRetriever
 | |
| from haystack.retriever.dense import EmbeddingRetriever
 | |
| 
 | |
| logger = logging.getLogger('haystack')
 | |
| logger.setLevel(LOG_LEVEL)
 | |
| 
 | |
| router = APIRouter()
 | |
| 
 | |
| # Init global components: DocumentStore, Retriever, Reader, Finder
 | |
| document_store = ElasticsearchDocumentStore(
 | |
|     host=DB_HOST,
 | |
|     port=DB_PORT,
 | |
|     username=DB_USER,
 | |
|     password=DB_PW,
 | |
|     index=DB_INDEX,
 | |
|     scheme=ES_CONN_SCHEME,
 | |
|     ca_certs=False,
 | |
|     verify_certs=False,
 | |
|     text_field=TEXT_FIELD_NAME,
 | |
|     name_field=NAME_FIELD_NAME,
 | |
|     search_fields=SEARCH_FIELD_NAME,
 | |
|     embedding_dim=EMBEDDING_DIM,
 | |
|     embedding_field=EMBEDDING_FIELD_NAME,
 | |
|     excluded_meta_data=EXCLUDE_META_DATA_FIELDS,  # type: ignore
 | |
|     faq_question_field=FAQ_QUESTION_FIELD_NAME,
 | |
|     create_index=CREATE_INDEX,
 | |
|     similarity=VECTOR_SIMILARITY_METRIC
 | |
| )
 | |
| 
 | |
| if RETRIEVER_TYPE == "EmbeddingRetriever":
 | |
|     retriever = EmbeddingRetriever(
 | |
|         document_store=document_store,
 | |
|         embedding_model=EMBEDDING_MODEL_PATH,
 | |
|         model_format=EMBEDDING_MODEL_FORMAT,
 | |
|         use_gpu=USE_GPU
 | |
|     )  # type: BaseRetriever
 | |
| elif RETRIEVER_TYPE == "ElasticsearchRetriever":
 | |
|     retriever = ElasticsearchRetriever(document_store=document_store)
 | |
| elif RETRIEVER_TYPE is None or RETRIEVER_TYPE == "ElasticsearchFilterOnlyRetriever":
 | |
|     retriever = ElasticsearchFilterOnlyRetriever(document_store=document_store)
 | |
| else:
 | |
|     raise ValueError(f"Could not load Retriever of type '{RETRIEVER_TYPE}'. "
 | |
|                      f"Please adjust RETRIEVER_TYPE to one of: "
 | |
|                      f"'EmbeddingRetriever', 'ElasticsearchRetriever', 'ElasticsearchFilterOnlyRetriever', None"
 | |
|                      f"OR modify rest_api/search.py to support your retriever"
 | |
|                      )
 | |
| 
 | |
| if READER_MODEL_PATH:  # for extractive doc-qa
 | |
|     if READER_TYPE == "TransformersReader":
 | |
|         use_gpu = -1 if not USE_GPU else GPU_NUMBER
 | |
|         reader = TransformersReader(
 | |
|             model_name_or_path=READER_MODEL_PATH,
 | |
|             use_gpu=use_gpu,
 | |
|             context_window_size=CONTEXT_WINDOW_SIZE,
 | |
|             return_no_answers=READER_CAN_HAVE_NO_ANSWER,
 | |
|             tokenizer=READER_TOKENIZER
 | |
|         )  # type: Optional[BaseReader]
 | |
|     elif READER_TYPE == "FARMReader":
 | |
|         reader = FARMReader(
 | |
|             model_name_or_path=READER_MODEL_PATH,
 | |
|             batch_size=BATCHSIZE,
 | |
|             use_gpu=USE_GPU,
 | |
|             context_window_size=CONTEXT_WINDOW_SIZE,
 | |
|             top_k_per_candidate=TOP_K_PER_CANDIDATE,
 | |
|             no_ans_boost=NO_ANS_BOOST,
 | |
|             num_processes=MAX_PROCESSES,
 | |
|             max_seq_len=MAX_SEQ_LEN,
 | |
|             doc_stride=DOC_STRIDE,
 | |
|         )  # type: Optional[BaseReader]
 | |
|     else:
 | |
|         raise ValueError(f"Could not load Reader of type '{READER_TYPE}'. "
 | |
|                          f"Please adjust READER_TYPE to one of: "
 | |
|                          f"'FARMReader', 'TransformersReader', None"
 | |
|                          )
 | |
| else:
 | |
|     reader = None  # don't need one for pure FAQ matching
 | |
| 
 | |
| FINDERS = {1: Finder(reader=reader, retriever=retriever)}
 | |
| 
 | |
| 
 | |
| #############################################
 | |
| # Endpoints
 | |
| #############################################
 | |
| doc_qa_limiter = RequestLimiter(CONCURRENT_REQUEST_PER_WORKER)
 | |
| 
 | |
| 
 | |
| @router.post("/models/{model_id}/doc-qa", response_model=Answers, response_model_exclude_unset=True)
 | |
| def doc_qa(model_id: int, question_request: Question):
 | |
|     with doc_qa_limiter.run():
 | |
|         start_time = time.time()
 | |
|         finder = FINDERS.get(model_id, None)
 | |
|         if not finder:
 | |
|             raise HTTPException(
 | |
|                 status_code=404, detail=f"Could not get Finder with ID {model_id}. Available IDs: {list(FINDERS.keys())}"
 | |
|             )
 | |
| 
 | |
|         results = search_documents(finder, question_request, start_time)
 | |
| 
 | |
|         return {"results": results}
 | |
| 
 | |
| 
 | |
| @router.post("/models/{model_id}/faq-qa", response_model=Answers, response_model_exclude_unset=True)
 | |
| def faq_qa(model_id: int, request: Question):
 | |
|     finder = FINDERS.get(model_id, None)
 | |
|     if not finder:
 | |
|         raise HTTPException(
 | |
|             status_code=404, detail=f"Could not get Finder with ID {model_id}. Available IDs: {list(FINDERS.keys())}"
 | |
|         )
 | |
| 
 | |
|     results = []
 | |
|     for question in request.questions:
 | |
|         if request.filters:
 | |
|             # put filter values into a list and remove filters with null value
 | |
|             filters = {}
 | |
|             for key, values in request.filters.items():
 | |
|                 if values is None:
 | |
|                     continue
 | |
|                 if not isinstance(values, list):
 | |
|                     values = [values]
 | |
|                 filters[key] = values
 | |
|             logger.info(f" [{datetime.now()}] Request: {request}")
 | |
|         else:
 | |
|             filters = {}
 | |
| 
 | |
|         result = finder.get_answers_via_similar_questions(
 | |
|             question=question, top_k_retriever=request.top_k_retriever, filters=filters,
 | |
|         )
 | |
|         results.append(result)
 | |
| 
 | |
|     elasticapm.set_custom_context({"results": results})
 | |
|     logger.info(json.dumps({"request": request.dict(), "results": results}))
 | |
| 
 | |
|     return {"results": results}
 | |
| 
 | |
| 
 | |
| @router.post("/models/{model_id}/query", response_model=Dict[str, Any], response_model_exclude_unset=True)
 | |
| def query(model_id: int, query_request: Dict[str, Any], top_k_reader: int = DEFAULT_TOP_K_READER):
 | |
|     with doc_qa_limiter.run():
 | |
|         start_time = time.time()
 | |
|         finder = FINDERS.get(model_id, None)
 | |
|         if not finder:
 | |
|             raise HTTPException(
 | |
|                 status_code=404, detail=f"Could not get Finder with ID {model_id}. Available IDs: {list(FINDERS.keys())}"
 | |
|             )
 | |
| 
 | |
|         question_request = Question.from_elastic_query_dsl(query_request, top_k_reader)
 | |
| 
 | |
|         answers = search_documents(finder, question_request, start_time)
 | |
|         response: Dict[str, Any] = {}
 | |
|         if answers and len(answers) > 0:
 | |
|             response = AnswersToIndividualQuestion.to_elastic_response_dsl(dict(answers[0]))
 | |
| 
 | |
|         return response
 | |
| 
 | |
| 
 | |
| def search_documents(finder, question_request, start_time) -> List[AnswersToIndividualQuestion]:
 | |
|     results = []
 | |
|     for question in question_request.questions:
 | |
|         if question_request.filters:
 | |
|             # put filter values into a list and remove filters with null value
 | |
|             filters = {}
 | |
|             for key, values in question_request.filters.items():
 | |
|                 if values is None:
 | |
|                     continue
 | |
|                 if not isinstance(values, list):
 | |
|                     values = [values]
 | |
|                 filters[key] = values
 | |
|             logger.info(f" [{datetime.now()}] Request: {question_request}")
 | |
|         else:
 | |
|             filters = {}
 | |
| 
 | |
|         result = finder.get_answers(
 | |
|             question=question,
 | |
|             top_k_retriever=question_request.top_k_retriever,
 | |
|             top_k_reader=question_request.top_k_reader,
 | |
|             filters=filters,
 | |
|         )
 | |
|         results.append(result)
 | |
|     elasticapm.set_custom_context({"results": results})
 | |
|     end_time = time.time()
 | |
|     logger.info(
 | |
|         json.dumps({"request": question_request.dict(), "results": results,
 | |
|                     "time": f"{(end_time - start_time):.2f}"}))
 | |
|     return results
 |