mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-01 09:37:36 +00:00
421 lines
13 KiB
Markdown
421 lines
13 KiB
Markdown
---
|
|
title: "Agents"
|
|
id: agents-api
|
|
description: "Tool-using agents with provider-agnostic chat model support."
|
|
slug: "/agents-api"
|
|
---
|
|
|
|
<a id="agent"></a>
|
|
|
|
## Module agent
|
|
|
|
<a id="agent.Agent"></a>
|
|
|
|
### Agent
|
|
|
|
A Haystack component that implements a tool-using agent with provider-agnostic chat model support.
|
|
|
|
The component processes messages and executes tools until an exit condition is met.
|
|
The exit condition can be triggered either by a direct text response or by invoking a specific designated tool.
|
|
Multiple exit conditions can be specified.
|
|
|
|
When you call an Agent without tools, it acts as a ChatGenerator, produces one response, then exits.
|
|
|
|
### Usage example
|
|
```python
|
|
from haystack.components.agents import Agent
|
|
from haystack.components.generators.chat import OpenAIChatGenerator
|
|
from haystack.dataclasses import ChatMessage
|
|
from haystack.tools import Tool
|
|
|
|
# Tool functions - in practice, these would have real implementations
|
|
def search(query: str) -> str:
|
|
'''Search for information on the web.'''
|
|
# Placeholder: would call actual search API
|
|
return "In France, a 15% service charge is typically included, but leaving 5-10% extra is appreciated."
|
|
|
|
def calculator(operation: str, a: float, b: float) -> float:
|
|
'''Perform mathematical calculations.'''
|
|
if operation == "multiply":
|
|
return a * b
|
|
elif operation == "percentage":
|
|
return (a / 100) * b
|
|
return 0
|
|
|
|
# Define tools with JSON Schema
|
|
tools = [
|
|
Tool(
|
|
name="search",
|
|
description="Searches for information on the web",
|
|
parameters={
|
|
"type": "object",
|
|
"properties": {
|
|
"query": {"type": "string", "description": "The search query"}
|
|
},
|
|
"required": ["query"]
|
|
},
|
|
function=search
|
|
),
|
|
Tool(
|
|
name="calculator",
|
|
description="Performs mathematical calculations",
|
|
parameters={
|
|
"type": "object",
|
|
"properties": {
|
|
"operation": {"type": "string", "description": "Operation: multiply, percentage"},
|
|
"a": {"type": "number", "description": "First number"},
|
|
"b": {"type": "number", "description": "Second number"}
|
|
},
|
|
"required": ["operation", "a", "b"]
|
|
},
|
|
function=calculator
|
|
)
|
|
]
|
|
|
|
# Create and run the agent
|
|
agent = Agent(
|
|
chat_generator=OpenAIChatGenerator(),
|
|
tools=tools
|
|
)
|
|
|
|
result = agent.run(
|
|
messages=[ChatMessage.from_user("Calculate the appropriate tip for an €85 meal in France")]
|
|
)
|
|
|
|
# The agent will:
|
|
# 1. Search for tipping customs in France
|
|
# 2. Use calculator to compute tip based on findings
|
|
# 3. Return the final answer with context
|
|
print(result["messages"][-1].text)
|
|
```
|
|
|
|
<a id="agent.Agent.__init__"></a>
|
|
|
|
#### Agent.\_\_init\_\_
|
|
|
|
```python
|
|
def __init__(*,
|
|
chat_generator: ChatGenerator,
|
|
tools: Optional[ToolsType] = None,
|
|
system_prompt: Optional[str] = None,
|
|
exit_conditions: Optional[list[str]] = None,
|
|
state_schema: Optional[dict[str, Any]] = None,
|
|
max_agent_steps: int = 100,
|
|
streaming_callback: Optional[StreamingCallbackT] = None,
|
|
raise_on_tool_invocation_failure: bool = False,
|
|
tool_invoker_kwargs: Optional[dict[str, Any]] = None) -> None
|
|
```
|
|
|
|
Initialize the agent component.
|
|
|
|
**Arguments**:
|
|
|
|
- `chat_generator`: An instance of the chat generator that your agent should use. It must support tools.
|
|
- `tools`: A list of Tool and/or Toolset objects, or a single Toolset that the agent can use.
|
|
- `system_prompt`: System prompt for the agent.
|
|
- `exit_conditions`: List of conditions that will cause the agent to return.
|
|
Can include "text" if the agent should return when it generates a message without tool calls,
|
|
or tool names that will cause the agent to return once the tool was executed. Defaults to ["text"].
|
|
- `state_schema`: The schema for the runtime state used by the tools.
|
|
- `max_agent_steps`: Maximum number of steps the agent will run before stopping. Defaults to 100.
|
|
If the agent exceeds this number of steps, it will stop and return the current state.
|
|
- `streaming_callback`: A callback that will be invoked when a response is streamed from the LLM.
|
|
The same callback can be configured to emit tool results when a tool is called.
|
|
- `raise_on_tool_invocation_failure`: Should the agent raise an exception when a tool invocation fails?
|
|
If set to False, the exception will be turned into a chat message and passed to the LLM.
|
|
- `tool_invoker_kwargs`: Additional keyword arguments to pass to the ToolInvoker.
|
|
|
|
**Raises**:
|
|
|
|
- `TypeError`: If the chat_generator does not support tools parameter in its run method.
|
|
- `ValueError`: If the exit_conditions are not valid.
|
|
|
|
<a id="agent.Agent.warm_up"></a>
|
|
|
|
#### Agent.warm\_up
|
|
|
|
```python
|
|
def warm_up() -> None
|
|
```
|
|
|
|
Warm up the Agent.
|
|
|
|
<a id="agent.Agent.to_dict"></a>
|
|
|
|
#### Agent.to\_dict
|
|
|
|
```python
|
|
def to_dict() -> dict[str, Any]
|
|
```
|
|
|
|
Serialize the component to a dictionary.
|
|
|
|
**Returns**:
|
|
|
|
Dictionary with serialized data
|
|
|
|
<a id="agent.Agent.from_dict"></a>
|
|
|
|
#### Agent.from\_dict
|
|
|
|
```python
|
|
@classmethod
|
|
def from_dict(cls, data: dict[str, Any]) -> "Agent"
|
|
```
|
|
|
|
Deserialize the agent from a dictionary.
|
|
|
|
**Arguments**:
|
|
|
|
- `data`: Dictionary to deserialize from
|
|
|
|
**Returns**:
|
|
|
|
Deserialized agent
|
|
|
|
<a id="agent.Agent.run"></a>
|
|
|
|
#### Agent.run
|
|
|
|
```python
|
|
def run(messages: list[ChatMessage],
|
|
streaming_callback: Optional[StreamingCallbackT] = None,
|
|
*,
|
|
generation_kwargs: Optional[dict[str, Any]] = None,
|
|
break_point: Optional[AgentBreakpoint] = None,
|
|
snapshot: Optional[AgentSnapshot] = None,
|
|
system_prompt: Optional[str] = None,
|
|
tools: Optional[Union[ToolsType, list[str]]] = None,
|
|
**kwargs: Any) -> dict[str, Any]
|
|
```
|
|
|
|
Process messages and execute tools until an exit condition is met.
|
|
|
|
**Arguments**:
|
|
|
|
- `messages`: List of Haystack ChatMessage objects to process.
|
|
- `streaming_callback`: A callback that will be invoked when a response is streamed from the LLM.
|
|
The same callback can be configured to emit tool results when a tool is called.
|
|
- `generation_kwargs`: Additional keyword arguments for LLM. These parameters will
|
|
override the parameters passed during component initialization.
|
|
- `break_point`: An AgentBreakpoint, can be a Breakpoint for the "chat_generator" or a ToolBreakpoint
|
|
for "tool_invoker".
|
|
- `snapshot`: A dictionary containing a snapshot of a previously saved agent execution. The snapshot contains
|
|
the relevant information to restart the Agent execution from where it left off.
|
|
- `system_prompt`: System prompt for the agent. If provided, it overrides the default system prompt.
|
|
- `tools`: Optional list of Tool objects, a Toolset, or list of tool names to use for this run.
|
|
When passing tool names, tools are selected from the Agent's originally configured tools.
|
|
- `kwargs`: Additional data to pass to the State schema used by the Agent.
|
|
The keys must match the schema defined in the Agent's `state_schema`.
|
|
|
|
**Raises**:
|
|
|
|
- `RuntimeError`: If the Agent component wasn't warmed up before calling `run()`.
|
|
- `BreakpointException`: If an agent breakpoint is triggered.
|
|
|
|
**Returns**:
|
|
|
|
A dictionary with the following keys:
|
|
- "messages": List of all messages exchanged during the agent's run.
|
|
- "last_message": The last message exchanged during the agent's run.
|
|
- Any additional keys defined in the `state_schema`.
|
|
|
|
<a id="agent.Agent.run_async"></a>
|
|
|
|
#### Agent.run\_async
|
|
|
|
```python
|
|
async def run_async(messages: list[ChatMessage],
|
|
streaming_callback: Optional[StreamingCallbackT] = None,
|
|
*,
|
|
generation_kwargs: Optional[dict[str, Any]] = None,
|
|
break_point: Optional[AgentBreakpoint] = None,
|
|
snapshot: Optional[AgentSnapshot] = None,
|
|
system_prompt: Optional[str] = None,
|
|
tools: Optional[Union[ToolsType, list[str]]] = None,
|
|
**kwargs: Any) -> dict[str, Any]
|
|
```
|
|
|
|
Asynchronously process messages and execute tools until the exit condition is met.
|
|
|
|
This is the asynchronous version of the `run` method. It follows the same logic but uses
|
|
asynchronous operations where possible, such as calling the `run_async` method of the ChatGenerator
|
|
if available.
|
|
|
|
**Arguments**:
|
|
|
|
- `messages`: List of Haystack ChatMessage objects to process.
|
|
- `streaming_callback`: An asynchronous callback that will be invoked when a response is streamed from the
|
|
LLM. The same callback can be configured to emit tool results when a tool is called.
|
|
- `generation_kwargs`: Additional keyword arguments for LLM. These parameters will
|
|
override the parameters passed during component initialization.
|
|
- `break_point`: An AgentBreakpoint, can be a Breakpoint for the "chat_generator" or a ToolBreakpoint
|
|
for "tool_invoker".
|
|
- `snapshot`: A dictionary containing a snapshot of a previously saved agent execution. The snapshot contains
|
|
the relevant information to restart the Agent execution from where it left off.
|
|
- `system_prompt`: System prompt for the agent. If provided, it overrides the default system prompt.
|
|
- `tools`: Optional list of Tool objects, a Toolset, or list of tool names to use for this run.
|
|
- `kwargs`: Additional data to pass to the State schema used by the Agent.
|
|
The keys must match the schema defined in the Agent's `state_schema`.
|
|
|
|
**Raises**:
|
|
|
|
- `RuntimeError`: If the Agent component wasn't warmed up before calling `run_async()`.
|
|
- `BreakpointException`: If an agent breakpoint is triggered.
|
|
|
|
**Returns**:
|
|
|
|
A dictionary with the following keys:
|
|
- "messages": List of all messages exchanged during the agent's run.
|
|
- "last_message": The last message exchanged during the agent's run.
|
|
- Any additional keys defined in the `state_schema`.
|
|
|
|
<a id="state/state"></a>
|
|
|
|
## Module state/state
|
|
|
|
<a id="state/state.State"></a>
|
|
|
|
### State
|
|
|
|
State is a container for storing shared information during the execution of an Agent and its tools.
|
|
|
|
For instance, State can be used to store documents, context, and intermediate results.
|
|
|
|
Internally it wraps a `_data` dictionary defined by a `schema`. Each schema entry has:
|
|
```json
|
|
"parameter_name": {
|
|
"type": SomeType, # expected type
|
|
"handler": Optional[Callable[[Any, Any], Any]] # merge/update function
|
|
}
|
|
```
|
|
|
|
Handlers control how values are merged when using the `set()` method:
|
|
- For list types: defaults to `merge_lists` (concatenates lists)
|
|
- For other types: defaults to `replace_values` (overwrites existing value)
|
|
|
|
A `messages` field with type `list[ChatMessage]` is automatically added to the schema.
|
|
|
|
This makes it possible for the Agent to read from and write to the same context.
|
|
|
|
### Usage example
|
|
```python
|
|
from haystack.components.agents.state import State
|
|
|
|
my_state = State(
|
|
schema={"gh_repo_name": {"type": str}, "user_name": {"type": str}},
|
|
data={"gh_repo_name": "my_repo", "user_name": "my_user_name"}
|
|
)
|
|
```
|
|
|
|
<a id="state/state.State.__init__"></a>
|
|
|
|
#### State.\_\_init\_\_
|
|
|
|
```python
|
|
def __init__(schema: dict[str, Any], data: Optional[dict[str, Any]] = None)
|
|
```
|
|
|
|
Initialize a State object with a schema and optional data.
|
|
|
|
**Arguments**:
|
|
|
|
- `schema`: Dictionary mapping parameter names to their type and handler configs.
|
|
Type must be a valid Python type, and handler must be a callable function or None.
|
|
If handler is None, the default handler for the type will be used. The default handlers are:
|
|
- For list types: `haystack.agents.state.state_utils.merge_lists`
|
|
- For all other types: `haystack.agents.state.state_utils.replace_values`
|
|
- `data`: Optional dictionary of initial data to populate the state
|
|
|
|
<a id="state/state.State.get"></a>
|
|
|
|
#### State.get
|
|
|
|
```python
|
|
def get(key: str, default: Any = None) -> Any
|
|
```
|
|
|
|
Retrieve a value from the state by key.
|
|
|
|
**Arguments**:
|
|
|
|
- `key`: Key to look up in the state
|
|
- `default`: Value to return if key is not found
|
|
|
|
**Returns**:
|
|
|
|
Value associated with key or default if not found
|
|
|
|
<a id="state/state.State.set"></a>
|
|
|
|
#### State.set
|
|
|
|
```python
|
|
def set(key: str,
|
|
value: Any,
|
|
handler_override: Optional[Callable[[Any, Any], Any]] = None) -> None
|
|
```
|
|
|
|
Set or merge a value in the state according to schema rules.
|
|
|
|
Value is merged or overwritten according to these rules:
|
|
- if handler_override is given, use that
|
|
- else use the handler defined in the schema for 'key'
|
|
|
|
**Arguments**:
|
|
|
|
- `key`: Key to store the value under
|
|
- `value`: Value to store or merge
|
|
- `handler_override`: Optional function to override the default merge behavior
|
|
|
|
<a id="state/state.State.data"></a>
|
|
|
|
#### State.data
|
|
|
|
```python
|
|
@property
|
|
def data()
|
|
```
|
|
|
|
All current data of the state.
|
|
|
|
<a id="state/state.State.has"></a>
|
|
|
|
#### State.has
|
|
|
|
```python
|
|
def has(key: str) -> bool
|
|
```
|
|
|
|
Check if a key exists in the state.
|
|
|
|
**Arguments**:
|
|
|
|
- `key`: Key to check for existence
|
|
|
|
**Returns**:
|
|
|
|
True if key exists in state, False otherwise
|
|
|
|
<a id="state/state.State.to_dict"></a>
|
|
|
|
#### State.to\_dict
|
|
|
|
```python
|
|
def to_dict()
|
|
```
|
|
|
|
Convert the State object to a dictionary.
|
|
|
|
<a id="state/state.State.from_dict"></a>
|
|
|
|
#### State.from\_dict
|
|
|
|
```python
|
|
@classmethod
|
|
def from_dict(cls, data: dict[str, Any])
|
|
```
|
|
|
|
Convert a dictionary back to a State object.
|
|
|