Haystack Bot 4b86c1e4ee
Sync Haystack API reference on Docusaurus (#10009)
Co-authored-by: vblagoje <458335+vblagoje@users.noreply.github.com>
2025-11-04 10:13:38 +01:00

421 lines
13 KiB
Markdown

---
title: "Agents"
id: agents-api
description: "Tool-using agents with provider-agnostic chat model support."
slug: "/agents-api"
---
<a id="agent"></a>
## Module agent
<a id="agent.Agent"></a>
### Agent
A Haystack component that implements a tool-using agent with provider-agnostic chat model support.
The component processes messages and executes tools until an exit condition is met.
The exit condition can be triggered either by a direct text response or by invoking a specific designated tool.
Multiple exit conditions can be specified.
When you call an Agent without tools, it acts as a ChatGenerator, produces one response, then exits.
### Usage example
```python
from haystack.components.agents import Agent
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.dataclasses import ChatMessage
from haystack.tools import Tool
# Tool functions - in practice, these would have real implementations
def search(query: str) -> str:
'''Search for information on the web.'''
# Placeholder: would call actual search API
return "In France, a 15% service charge is typically included, but leaving 5-10% extra is appreciated."
def calculator(operation: str, a: float, b: float) -> float:
'''Perform mathematical calculations.'''
if operation == "multiply":
return a * b
elif operation == "percentage":
return (a / 100) * b
return 0
# Define tools with JSON Schema
tools = [
Tool(
name="search",
description="Searches for information on the web",
parameters={
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query"}
},
"required": ["query"]
},
function=search
),
Tool(
name="calculator",
description="Performs mathematical calculations",
parameters={
"type": "object",
"properties": {
"operation": {"type": "string", "description": "Operation: multiply, percentage"},
"a": {"type": "number", "description": "First number"},
"b": {"type": "number", "description": "Second number"}
},
"required": ["operation", "a", "b"]
},
function=calculator
)
]
# Create and run the agent
agent = Agent(
chat_generator=OpenAIChatGenerator(),
tools=tools
)
result = agent.run(
messages=[ChatMessage.from_user("Calculate the appropriate tip for an €85 meal in France")]
)
# The agent will:
# 1. Search for tipping customs in France
# 2. Use calculator to compute tip based on findings
# 3. Return the final answer with context
print(result["messages"][-1].text)
```
<a id="agent.Agent.__init__"></a>
#### Agent.\_\_init\_\_
```python
def __init__(*,
chat_generator: ChatGenerator,
tools: Optional[ToolsType] = None,
system_prompt: Optional[str] = None,
exit_conditions: Optional[list[str]] = None,
state_schema: Optional[dict[str, Any]] = None,
max_agent_steps: int = 100,
streaming_callback: Optional[StreamingCallbackT] = None,
raise_on_tool_invocation_failure: bool = False,
tool_invoker_kwargs: Optional[dict[str, Any]] = None) -> None
```
Initialize the agent component.
**Arguments**:
- `chat_generator`: An instance of the chat generator that your agent should use. It must support tools.
- `tools`: A list of Tool and/or Toolset objects, or a single Toolset that the agent can use.
- `system_prompt`: System prompt for the agent.
- `exit_conditions`: List of conditions that will cause the agent to return.
Can include "text" if the agent should return when it generates a message without tool calls,
or tool names that will cause the agent to return once the tool was executed. Defaults to ["text"].
- `state_schema`: The schema for the runtime state used by the tools.
- `max_agent_steps`: Maximum number of steps the agent will run before stopping. Defaults to 100.
If the agent exceeds this number of steps, it will stop and return the current state.
- `streaming_callback`: A callback that will be invoked when a response is streamed from the LLM.
The same callback can be configured to emit tool results when a tool is called.
- `raise_on_tool_invocation_failure`: Should the agent raise an exception when a tool invocation fails?
If set to False, the exception will be turned into a chat message and passed to the LLM.
- `tool_invoker_kwargs`: Additional keyword arguments to pass to the ToolInvoker.
**Raises**:
- `TypeError`: If the chat_generator does not support tools parameter in its run method.
- `ValueError`: If the exit_conditions are not valid.
<a id="agent.Agent.warm_up"></a>
#### Agent.warm\_up
```python
def warm_up() -> None
```
Warm up the Agent.
<a id="agent.Agent.to_dict"></a>
#### Agent.to\_dict
```python
def to_dict() -> dict[str, Any]
```
Serialize the component to a dictionary.
**Returns**:
Dictionary with serialized data
<a id="agent.Agent.from_dict"></a>
#### Agent.from\_dict
```python
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "Agent"
```
Deserialize the agent from a dictionary.
**Arguments**:
- `data`: Dictionary to deserialize from
**Returns**:
Deserialized agent
<a id="agent.Agent.run"></a>
#### Agent.run
```python
def run(messages: list[ChatMessage],
streaming_callback: Optional[StreamingCallbackT] = None,
*,
generation_kwargs: Optional[dict[str, Any]] = None,
break_point: Optional[AgentBreakpoint] = None,
snapshot: Optional[AgentSnapshot] = None,
system_prompt: Optional[str] = None,
tools: Optional[Union[ToolsType, list[str]]] = None,
**kwargs: Any) -> dict[str, Any]
```
Process messages and execute tools until an exit condition is met.
**Arguments**:
- `messages`: List of Haystack ChatMessage objects to process.
- `streaming_callback`: A callback that will be invoked when a response is streamed from the LLM.
The same callback can be configured to emit tool results when a tool is called.
- `generation_kwargs`: Additional keyword arguments for LLM. These parameters will
override the parameters passed during component initialization.
- `break_point`: An AgentBreakpoint, can be a Breakpoint for the "chat_generator" or a ToolBreakpoint
for "tool_invoker".
- `snapshot`: A dictionary containing a snapshot of a previously saved agent execution. The snapshot contains
the relevant information to restart the Agent execution from where it left off.
- `system_prompt`: System prompt for the agent. If provided, it overrides the default system prompt.
- `tools`: Optional list of Tool objects, a Toolset, or list of tool names to use for this run.
When passing tool names, tools are selected from the Agent's originally configured tools.
- `kwargs`: Additional data to pass to the State schema used by the Agent.
The keys must match the schema defined in the Agent's `state_schema`.
**Raises**:
- `RuntimeError`: If the Agent component wasn't warmed up before calling `run()`.
- `BreakpointException`: If an agent breakpoint is triggered.
**Returns**:
A dictionary with the following keys:
- "messages": List of all messages exchanged during the agent's run.
- "last_message": The last message exchanged during the agent's run.
- Any additional keys defined in the `state_schema`.
<a id="agent.Agent.run_async"></a>
#### Agent.run\_async
```python
async def run_async(messages: list[ChatMessage],
streaming_callback: Optional[StreamingCallbackT] = None,
*,
generation_kwargs: Optional[dict[str, Any]] = None,
break_point: Optional[AgentBreakpoint] = None,
snapshot: Optional[AgentSnapshot] = None,
system_prompt: Optional[str] = None,
tools: Optional[Union[ToolsType, list[str]]] = None,
**kwargs: Any) -> dict[str, Any]
```
Asynchronously process messages and execute tools until the exit condition is met.
This is the asynchronous version of the `run` method. It follows the same logic but uses
asynchronous operations where possible, such as calling the `run_async` method of the ChatGenerator
if available.
**Arguments**:
- `messages`: List of Haystack ChatMessage objects to process.
- `streaming_callback`: An asynchronous callback that will be invoked when a response is streamed from the
LLM. The same callback can be configured to emit tool results when a tool is called.
- `generation_kwargs`: Additional keyword arguments for LLM. These parameters will
override the parameters passed during component initialization.
- `break_point`: An AgentBreakpoint, can be a Breakpoint for the "chat_generator" or a ToolBreakpoint
for "tool_invoker".
- `snapshot`: A dictionary containing a snapshot of a previously saved agent execution. The snapshot contains
the relevant information to restart the Agent execution from where it left off.
- `system_prompt`: System prompt for the agent. If provided, it overrides the default system prompt.
- `tools`: Optional list of Tool objects, a Toolset, or list of tool names to use for this run.
- `kwargs`: Additional data to pass to the State schema used by the Agent.
The keys must match the schema defined in the Agent's `state_schema`.
**Raises**:
- `RuntimeError`: If the Agent component wasn't warmed up before calling `run_async()`.
- `BreakpointException`: If an agent breakpoint is triggered.
**Returns**:
A dictionary with the following keys:
- "messages": List of all messages exchanged during the agent's run.
- "last_message": The last message exchanged during the agent's run.
- Any additional keys defined in the `state_schema`.
<a id="state/state"></a>
## Module state/state
<a id="state/state.State"></a>
### State
State is a container for storing shared information during the execution of an Agent and its tools.
For instance, State can be used to store documents, context, and intermediate results.
Internally it wraps a `_data` dictionary defined by a `schema`. Each schema entry has:
```json
"parameter_name": {
"type": SomeType, # expected type
"handler": Optional[Callable[[Any, Any], Any]] # merge/update function
}
```
Handlers control how values are merged when using the `set()` method:
- For list types: defaults to `merge_lists` (concatenates lists)
- For other types: defaults to `replace_values` (overwrites existing value)
A `messages` field with type `list[ChatMessage]` is automatically added to the schema.
This makes it possible for the Agent to read from and write to the same context.
### Usage example
```python
from haystack.components.agents.state import State
my_state = State(
schema={"gh_repo_name": {"type": str}, "user_name": {"type": str}},
data={"gh_repo_name": "my_repo", "user_name": "my_user_name"}
)
```
<a id="state/state.State.__init__"></a>
#### State.\_\_init\_\_
```python
def __init__(schema: dict[str, Any], data: Optional[dict[str, Any]] = None)
```
Initialize a State object with a schema and optional data.
**Arguments**:
- `schema`: Dictionary mapping parameter names to their type and handler configs.
Type must be a valid Python type, and handler must be a callable function or None.
If handler is None, the default handler for the type will be used. The default handlers are:
- For list types: `haystack.agents.state.state_utils.merge_lists`
- For all other types: `haystack.agents.state.state_utils.replace_values`
- `data`: Optional dictionary of initial data to populate the state
<a id="state/state.State.get"></a>
#### State.get
```python
def get(key: str, default: Any = None) -> Any
```
Retrieve a value from the state by key.
**Arguments**:
- `key`: Key to look up in the state
- `default`: Value to return if key is not found
**Returns**:
Value associated with key or default if not found
<a id="state/state.State.set"></a>
#### State.set
```python
def set(key: str,
value: Any,
handler_override: Optional[Callable[[Any, Any], Any]] = None) -> None
```
Set or merge a value in the state according to schema rules.
Value is merged or overwritten according to these rules:
- if handler_override is given, use that
- else use the handler defined in the schema for 'key'
**Arguments**:
- `key`: Key to store the value under
- `value`: Value to store or merge
- `handler_override`: Optional function to override the default merge behavior
<a id="state/state.State.data"></a>
#### State.data
```python
@property
def data()
```
All current data of the state.
<a id="state/state.State.has"></a>
#### State.has
```python
def has(key: str) -> bool
```
Check if a key exists in the state.
**Arguments**:
- `key`: Key to check for existence
**Returns**:
True if key exists in state, False otherwise
<a id="state/state.State.to_dict"></a>
#### State.to\_dict
```python
def to_dict()
```
Convert the State object to a dictionary.
<a id="state/state.State.from_dict"></a>
#### State.from\_dict
```python
@classmethod
def from_dict(cls, data: dict[str, Any])
```
Convert a dictionary back to a State object.