mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-19 06:52:56 +00:00

* adding yaml functionality to BaseStandardPipeline fixes #1681 * Add latest docstring and tutorial changes * Update API Reference Pages for v1.0 (#1729) * Create new API pages and update existing ones * Create query classifier page * Remove Objects suffix * Change answer aggregation key to doc_id, query instead of label_id, query (#1726) * Add debugging example to tutorial (#1731) * Add debugging example to tutorial * Add latest docstring and tutorial changes * Remove Objects suffix * Add latest docstring and tutorial changes * Revert "Remove Objects suffix" This reverts commit 6681cb06510b080775994effe6a50bae42254be4. * Revert unintentional commit * Add third debugging option * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Fix another self.device/s typo (#1734) * Fix yet another self.device(s) typo * Add typing to 'initialize_device_settings' to try prevent future issues * Fix bug in Tutorial5 * Fix the same bug in the notebook Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * added test for saving and loading prebuilt pipelines * fixed typo, changed variable name and added comments * Add latest docstring and tutorial changes * Fix a few details of some tutorials (#1733) * Make Tutorial10 use print instead of logs and fix a typo in Tutoria15 * Add a type check in 'print_answers' * Add same checks to print_documents and print_questions * Make RAGenerator return Answers instead of dictionaries * Fix RAGenerator tests Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Fix `print_answers` (#1743) * Fix a specific path of print_answers that was assuming answers are dictionaries Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Split pipeline tests into three suites (#1755) * Split pipeline tests into three suites * Will this trigger the CI? * Rename duplicate test into test_most_similar_documents_pipeline * Fixing a bug that was probably never noticed * Capitalize starting letter in params (#1750) * Capitalize starting letter in params Capitalized the starting letter in code examples for params in keeping with the latest names for nodes where first letter is capitalized. Refer: https://github.com/deepset-ai/haystack/issues/1748 * Update standard_pipelines.py Capitalized some starting letters in the docstrings in keeping with the updated node names for standard pipelines * Multi query eval (#1746) * add eval() to pipeline * Add latest docstring and tutorial changes * support multiple queries in eval() * Add latest docstring and tutorial changes * keep single query test * fix EvaluationResult node_results default * adjust docstrings * Add latest docstring and tutorial changes * minor improvements from comments * Add latest docstring and tutorial changes * move EvaluationResult and calculate_metrics to schema * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Split summarizer tests in order to make windows CI work again (#1757) * separate testfile for summarizer with translation * Add latest docstring and tutorial changes * import SPLIT_DOCS from test_summarizer * add workflow_dispatch to windows_ci * add worflow_dispatch to linux_ci Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * fix import of EvaluationResult in test case * exclude test_summarizer_translation.py for windows_ci (#1759) * Pipelines now tolerate custom _debug content (#1756) * Pipelines now tolerate custom _debug content * Support Tables in all DocumentStores (#1744) * Add support for tables in SQLDocumentStore, FAISSDocumentStore and MilvuDocumentStore * Add support for WeaviateDocumentStore * Make sure that embedded meta fields are strings + add embedding_dim to WeaviateDocStore in test config * Add latest docstring and tutorial changes * Represent tables in WeaviateDocumentStore as nested lists * Fix mypy Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Allow TableReader models without aggregation classifier (#1772) * Fix usage of filters in `/query` endpoint in REST API (#1774) * WIP filter refactoring * fix filter formatting * remove inplace modification of filters * Public demo (#1747) * Queries now run only when pressing RUN. File upload hidden. Question is not sent if the textbox is empty. * Add latest docstring and tutorial changes * Tidy up: remove needless state, add comments, fix minor bugs * Had to add results to the status to avoid some bugs in eval mode * Added 'credits' * Add footers, update requirements, some random questions for the evaluation * Add requested changes * Temporary rollback the UI to the old GoT dataset Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Facilitate concurrent query / indexing in Elasticsearch with dense retrievers (new `skip_missing_embeddings` param) (#1762) * Filtering records not having embeddings * Added support for skip_missing_embeddings Flag. Default behavior is throw error when embeddings are missing. If skip_missing_embeddings=True then documents without embeddings are ignored for vector similarity * Fix for below error: haystack/document_stores/elasticsearch.py:852: error: Need type annotation for "script_score_query" * docstring for skip_missing_embeddings parameter * Raise exception where no documents with embeddings is found for Embedding retriever. * Default skip_missing_embeddings to True * Explicitly check if embeddings are present if no results are returned by EmbeddingRetriever for Elasticsearch * Added test case for based on Julian's input * Added test case for based on Julian's input. Fix pytest error on the testcase * Added test case for based on Julian's input. Fix pytest error on the testcase * Added test case for based on Julian's input. Fix pytest error on the testcase * Simplify code by using get_embed_count * Adjust docstring & error msg slightly * Revert error msg Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai> * Huggingface private model support via API tokens (FARMReader) (#1775) * passed kwargs to model loading * Pass Auth token explicitly * add use_auth_token to get_language_model_class * added use_auth_token parameter at FARMReader * Add latest docstring and tutorial changes * added docs for parameter `use_auth_token` * Add latest docstring and tutorial changes * adding docs link * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * private hugging face models for retrievers (#1785) * private dpr * Add latest docstring and tutorial changes * added parameters to child functions * Add latest docstring and tutorial changes * added tableextractor * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * ignore empty filters parameter (#1783) * ignore empty filters parameter * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * initialize doc store with doc and label index in tutorial 5 (#1730) * initialize doc store with doc and label index * change ipynb according to py for tutorial 5 * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Small fixes to the public demo (#1781) * Make strealit tolerant to haystack not knowing its version, and adding special error for docstore issues * Add workaround for a Streamlit bug * Make default filters value an empty dict * Return more context for each answer in the rest api * Make the hs_version call not-blocking by adding a very quick timeout * Add disclaimer on low confidence answer * Use the no-answer feature of the reader to highlight questions with no good answer * Upgrade torch to v1.10.0 (#1789) * Upgrade torch to v1.10.0 * Adapt torch version for torch-scatter in TableQA tutorial * Add latest docstring and tutorial changes * Make torch version more flexible Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * adding yaml functionality to BaseStandardPipeline fixes #1681 * Add latest docstring and tutorial changes * added test for saving and loading prebuilt pipelines * fixed typo, changed variable name and added comments * Add latest docstring and tutorial changes * fix code rendering for example * Add latest docstring and tutorial changes Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Branden Chan <33759007+brandenchan@users.noreply.github.com> Co-authored-by: Julian Risch <julian.risch@deepset.ai> Co-authored-by: Sara Zan <sara.zanzottera@deepset.ai> Co-authored-by: nishanthcgit <5066268+nishanthcgit@users.noreply.github.com> Co-authored-by: tstadel <60758086+tstadel@users.noreply.github.com> Co-authored-by: bogdankostic <bogdankostic@web.de> Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai> Co-authored-by: C V Goudar <cvgoudar@users.noreply.github.com> Co-authored-by: Kristof Herrmann <37148029+ArzelaAscoIi@users.noreply.github.com>
395 lines
14 KiB
Python
395 lines
14 KiB
Python
from pathlib import Path
|
|
|
|
import os
|
|
import pytest
|
|
|
|
from haystack.document_stores.elasticsearch import ElasticsearchDocumentStore
|
|
from haystack.pipeline import (
|
|
JoinDocuments,
|
|
Pipeline,
|
|
FAQPipeline,
|
|
DocumentSearchPipeline,
|
|
RootNode,
|
|
SklearnQueryClassifier,
|
|
TransformersQueryClassifier,
|
|
MostSimilarDocumentsPipeline,
|
|
)
|
|
from haystack.pipelines import ExtractiveQAPipeline
|
|
from haystack.reader import FARMReader
|
|
from haystack.retriever.dense import DensePassageRetriever
|
|
from haystack.retriever.sparse import ElasticsearchRetriever
|
|
from haystack.schema import Document
|
|
|
|
@pytest.mark.elasticsearch
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
|
|
def test_load_and_save_yaml(document_store, tmp_path):
|
|
# test correct load of indexing pipeline from yaml
|
|
pipeline = Pipeline.load_from_yaml(
|
|
Path(__file__).parent/"samples"/"pipeline"/"test_pipeline.yaml", pipeline_name="indexing_pipeline"
|
|
)
|
|
pipeline.run(
|
|
file_paths=Path(__file__).parent/"samples"/"pdf"/"sample_pdf_1.pdf"
|
|
)
|
|
# test correct load of query pipeline from yaml
|
|
pipeline = Pipeline.load_from_yaml(
|
|
Path(__file__).parent/"samples"/"pipeline"/"test_pipeline.yaml", pipeline_name="query_pipeline"
|
|
)
|
|
prediction = pipeline.run(
|
|
query="Who made the PDF specification?", params={"ESRetriever": {"top_k": 10}, "Reader": {"top_k": 3}}
|
|
)
|
|
assert prediction["query"] == "Who made the PDF specification?"
|
|
assert prediction["answers"][0].answer == "Adobe Systems"
|
|
assert "_debug" not in prediction.keys()
|
|
|
|
# test invalid pipeline name
|
|
with pytest.raises(Exception):
|
|
Pipeline.load_from_yaml(
|
|
path=Path(__file__).parent/"samples"/"pipeline"/"test_pipeline.yaml", pipeline_name="invalid"
|
|
)
|
|
# test config export
|
|
pipeline.save_to_yaml(tmp_path / "test.yaml")
|
|
with open(tmp_path / "test.yaml", "r", encoding="utf-8") as stream:
|
|
saved_yaml = stream.read()
|
|
expected_yaml = """
|
|
components:
|
|
- name: ESRetriever
|
|
params:
|
|
document_store: ElasticsearchDocumentStore
|
|
type: ElasticsearchRetriever
|
|
- name: ElasticsearchDocumentStore
|
|
params:
|
|
index: haystack_test
|
|
label_index: haystack_test_label
|
|
type: ElasticsearchDocumentStore
|
|
- name: Reader
|
|
params:
|
|
model_name_or_path: deepset/roberta-base-squad2
|
|
no_ans_boost: -10
|
|
type: FARMReader
|
|
pipelines:
|
|
- name: query
|
|
nodes:
|
|
- inputs:
|
|
- Query
|
|
name: ESRetriever
|
|
- inputs:
|
|
- ESRetriever
|
|
name: Reader
|
|
type: Pipeline
|
|
version: '0.8'
|
|
"""
|
|
assert saved_yaml.replace(" ", "").replace("\n", "") == expected_yaml.replace(
|
|
" ", ""
|
|
).replace("\n", "")
|
|
|
|
@pytest.mark.elasticsearch
|
|
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
|
|
def test_load_and_save_yaml_prebuilt_pipelines(document_store, tmp_path):
|
|
# populating index
|
|
pipeline = Pipeline.load_from_yaml(
|
|
Path(__file__).parent/"samples"/"pipeline"/"test_pipeline.yaml", pipeline_name="indexing_pipeline"
|
|
)
|
|
pipeline.run(
|
|
file_paths=Path(__file__).parent/"samples"/"pdf"/"sample_pdf_1.pdf"
|
|
)
|
|
# test correct load of query pipeline from yaml
|
|
pipeline = ExtractiveQAPipeline.load_from_yaml(
|
|
Path(__file__).parent/"samples"/"pipeline"/"test_pipeline.yaml", pipeline_name="query_pipeline"
|
|
)
|
|
prediction = pipeline.run(
|
|
query="Who made the PDF specification?", params={"ESRetriever": {"top_k": 10}, "Reader": {"top_k": 3}}
|
|
)
|
|
assert prediction["query"] == "Who made the PDF specification?"
|
|
assert prediction["answers"][0].answer == "Adobe Systems"
|
|
assert "_debug" not in prediction.keys()
|
|
|
|
# test invalid pipeline name
|
|
with pytest.raises(Exception):
|
|
ExtractiveQAPipeline.load_from_yaml(
|
|
path=Path(__file__).parent/"samples"/"pipeline"/"test_pipeline.yaml", pipeline_name="invalid"
|
|
)
|
|
# test config export
|
|
pipeline.save_to_yaml(tmp_path / "test.yaml")
|
|
with open(tmp_path / "test.yaml", "r", encoding="utf-8") as stream:
|
|
saved_yaml = stream.read()
|
|
expected_yaml = """
|
|
components:
|
|
- name: ESRetriever
|
|
params:
|
|
document_store: ElasticsearchDocumentStore
|
|
type: ElasticsearchRetriever
|
|
- name: ElasticsearchDocumentStore
|
|
params:
|
|
index: haystack_test
|
|
label_index: haystack_test_label
|
|
type: ElasticsearchDocumentStore
|
|
- name: Reader
|
|
params:
|
|
model_name_or_path: deepset/roberta-base-squad2
|
|
no_ans_boost: -10
|
|
type: FARMReader
|
|
pipelines:
|
|
- name: query
|
|
nodes:
|
|
- inputs:
|
|
- Query
|
|
name: ESRetriever
|
|
- inputs:
|
|
- ESRetriever
|
|
name: Reader
|
|
type: Pipeline
|
|
version: '0.8'
|
|
"""
|
|
assert saved_yaml.replace(" ", "").replace("\n", "") == expected_yaml.replace(
|
|
" ", ""
|
|
).replace("\n", "")
|
|
|
|
def test_load_tfidfretriever_yaml(tmp_path):
|
|
documents = [
|
|
{
|
|
"content": "A Doc specifically talking about haystack. Haystack can be used to scale QA models to large document collections."
|
|
}
|
|
]
|
|
pipeline = Pipeline.load_from_yaml(
|
|
Path(__file__).parent/"samples"/"pipeline"/"test_pipeline_tfidfretriever.yaml", pipeline_name="query_pipeline"
|
|
)
|
|
with pytest.raises(Exception) as exc_info:
|
|
pipeline.run(
|
|
query="What can be used to scale QA models to large document collections?", params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 3}}
|
|
)
|
|
exception_raised = str(exc_info.value)
|
|
assert "Retrieval requires dataframe df and tf-idf matrix" in exception_raised
|
|
|
|
pipeline.get_node(name="Retriever").document_store.write_documents(documents=documents)
|
|
prediction = pipeline.run(
|
|
query="What can be used to scale QA models to large document collections?",
|
|
params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 3}}
|
|
)
|
|
assert prediction["query"] == "What can be used to scale QA models to large document collections?"
|
|
assert prediction["answers"][0].answer == "haystack"
|
|
|
|
|
|
# @pytest.mark.slow
|
|
# @pytest.mark.elasticsearch
|
|
# @pytest.mark.parametrize(
|
|
# "retriever_with_docs, document_store_with_docs",
|
|
# [("elasticsearch", "elasticsearch")],
|
|
# indirect=True,
|
|
# )
|
|
@pytest.mark.parametrize(
|
|
"retriever_with_docs,document_store_with_docs",
|
|
[
|
|
("dpr", "elasticsearch"),
|
|
("dpr", "faiss"),
|
|
("dpr", "memory"),
|
|
("dpr", "milvus"),
|
|
("embedding", "elasticsearch"),
|
|
("embedding", "faiss"),
|
|
("embedding", "memory"),
|
|
("embedding", "milvus"),
|
|
("elasticsearch", "elasticsearch"),
|
|
("es_filter_only", "elasticsearch"),
|
|
("tfidf", "memory"),
|
|
],
|
|
indirect=True,
|
|
)
|
|
def test_graph_creation(retriever_with_docs, document_store_with_docs):
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="ES", component=retriever_with_docs, inputs=["Query"])
|
|
|
|
with pytest.raises(AssertionError):
|
|
pipeline.add_node(
|
|
name="Reader", component=retriever_with_docs, inputs=["ES.output_2"]
|
|
)
|
|
|
|
with pytest.raises(AssertionError):
|
|
pipeline.add_node(
|
|
name="Reader", component=retriever_with_docs, inputs=["ES.wrong_edge_label"]
|
|
)
|
|
|
|
with pytest.raises(Exception):
|
|
pipeline.add_node(
|
|
name="Reader", component=retriever_with_docs, inputs=["InvalidNode"]
|
|
)
|
|
|
|
with pytest.raises(Exception):
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(
|
|
name="ES", component=retriever_with_docs, inputs=["InvalidNode"]
|
|
)
|
|
|
|
|
|
def test_parallel_paths_in_pipeline_graph():
|
|
class A(RootNode):
|
|
def run(self):
|
|
test = "A"
|
|
return {"test": test}, "output_1"
|
|
|
|
class B(RootNode):
|
|
def run(self, test):
|
|
test += "B"
|
|
return {"test": test}, "output_1"
|
|
|
|
class C(RootNode):
|
|
def run(self, test):
|
|
test += "C"
|
|
return {"test": test}, "output_1"
|
|
|
|
class D(RootNode):
|
|
def run(self, test):
|
|
test += "D"
|
|
return {"test": test}, "output_1"
|
|
|
|
class E(RootNode):
|
|
def run(self, test):
|
|
test += "E"
|
|
return {"test": test}, "output_1"
|
|
|
|
class JoinNode(RootNode):
|
|
def run(self, inputs):
|
|
test = (
|
|
inputs[0]["test"] + inputs[1]["test"]
|
|
)
|
|
return {"test": test}, "output_1"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=A(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=E(), inputs=["C"])
|
|
pipeline.add_node(name="D", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E"])
|
|
output = pipeline.run(query="test")
|
|
assert output["test"] == "ABDABCE"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=A(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["B"])
|
|
pipeline.add_node(name="D", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=JoinNode(), inputs=["C", "D"])
|
|
output = pipeline.run(query="test")
|
|
assert output["test"] == "ABCABD"
|
|
|
|
|
|
def test_parallel_paths_in_pipeline_graph_with_branching():
|
|
class AWithOutput1(RootNode):
|
|
outgoing_edges = 2
|
|
|
|
def run(self):
|
|
output = "A"
|
|
return {"output": output}, "output_1"
|
|
|
|
class AWithOutput2(RootNode):
|
|
outgoing_edges = 2
|
|
|
|
def run(self):
|
|
output = "A"
|
|
return {"output": output}, "output_2"
|
|
|
|
class AWithOutputAll(RootNode):
|
|
outgoing_edges = 2
|
|
|
|
def run(self):
|
|
output = "A"
|
|
return {"output": output}, "output_all"
|
|
|
|
class B(RootNode):
|
|
def run(self, output):
|
|
output += "B"
|
|
return {"output": output}, "output_1"
|
|
|
|
class C(RootNode):
|
|
def run(self, output):
|
|
output += "C"
|
|
return {"output": output}, "output_1"
|
|
|
|
class D(RootNode):
|
|
def run(self, output):
|
|
output += "D"
|
|
return {"output": output}, "output_1"
|
|
|
|
class E(RootNode):
|
|
def run(self, output):
|
|
output += "E"
|
|
return {"output": output}, "output_1"
|
|
|
|
class JoinNode(RootNode):
|
|
def run(self, output=None, inputs=None):
|
|
if inputs:
|
|
output = ""
|
|
for input_dict in inputs:
|
|
output += input_dict["output"]
|
|
return {"output": output}, "output_1"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=AWithOutput1(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A.output_1"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["A.output_2"])
|
|
pipeline.add_node(name="D", component=E(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E", "C"])
|
|
output = pipeline.run(query="test")
|
|
assert output["output"] == "ABEABD"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=AWithOutput2(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A.output_1"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["A.output_2"])
|
|
pipeline.add_node(name="D", component=E(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E", "C"])
|
|
output = pipeline.run(query="test")
|
|
assert output["output"] == "AC"
|
|
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(name="A", component=AWithOutputAll(), inputs=["Query"])
|
|
pipeline.add_node(name="B", component=B(), inputs=["A.output_1"])
|
|
pipeline.add_node(name="C", component=C(), inputs=["A.output_2"])
|
|
pipeline.add_node(name="D", component=E(), inputs=["B"])
|
|
pipeline.add_node(name="E", component=D(), inputs=["B"])
|
|
pipeline.add_node(name="F", component=JoinNode(), inputs=["D", "E", "C"])
|
|
output = pipeline.run(query="test")
|
|
assert output["output"] == "ACABEABD"
|
|
|
|
|
|
def test_existing_faiss_document_store():
|
|
clean_faiss_document_store()
|
|
|
|
pipeline = Pipeline.load_from_yaml(
|
|
Path(__file__).parent/"samples"/"pipeline"/"test_pipeline_faiss_indexing.yaml", pipeline_name="indexing_pipeline"
|
|
)
|
|
pipeline.run(
|
|
file_paths=Path(__file__).parent/"samples"/"pdf"/"sample_pdf_1.pdf"
|
|
)
|
|
|
|
new_document_store = pipeline.get_document_store()
|
|
new_document_store.save('existing_faiss_document_store')
|
|
|
|
# test correct load of query pipeline from yaml
|
|
pipeline = Pipeline.load_from_yaml(
|
|
Path(__file__).parent/"samples"/"pipeline"/"test_pipeline_faiss_retrieval.yaml", pipeline_name="query_pipeline"
|
|
)
|
|
|
|
retriever = pipeline.get_node("DPRRetriever")
|
|
existing_document_store = retriever.document_store
|
|
faiss_index = existing_document_store.faiss_indexes['document']
|
|
assert faiss_index.ntotal == 2
|
|
|
|
prediction = pipeline.run(
|
|
query="Who made the PDF specification?", params={"DPRRetriever": {"top_k": 10}}
|
|
)
|
|
|
|
assert prediction["query"] == "Who made the PDF specification?"
|
|
assert len(prediction["documents"]) == 2
|
|
clean_faiss_document_store()
|
|
|
|
|
|
def clean_faiss_document_store():
|
|
if Path('existing_faiss_document_store').exists():
|
|
os.remove('existing_faiss_document_store')
|
|
if Path('existing_faiss_document_store.json').exists():
|
|
os.remove('existing_faiss_document_store.json')
|
|
if Path('faiss_document_store.db').exists():
|
|
os.remove('faiss_document_store.db')
|