haystack/test/nodes/test_retriever.py
Zoltan Fedor e143f7cc36
Fixing broken BM25 support with Weaviate - fixes #3720 (#3723)
* Fixing broken BM25 support with Weaviate - fixes #3720

Unfortunately the BM25 support with Weaviate got broken with Haystack v1.11.0+, which is getting fixed with this commit.

Please see more under issue #3720.

* Fixing mypy issue - method signature wasn't matching the base class

* Mypy related test fix

Mypy forced me to set the signature of the `query` method of the Weaviate document store to the same as its parent, the `KeywordDocumentStore`, where the `query` parame is `Optional`, but has NO default value, so it must be provided (as None) at runtime.
I am not quite sure why the abstract method's `query` param was set without a default value while its type is `Optional`, but I didn't want to change that, so instead I have changed the Weaviate tests.

* Adding a note regarding an upcomming fix in Weaviate v1.17.0

* Apply suggestions from code review

* revert

* [EMPTY] Re-trigger CI
2022-12-19 17:24:46 +01:00

1026 lines
40 KiB
Python

from typing import List
import os
import logging
import os
from math import isclose
from typing import Dict, List, Optional, Union
import pytest
import numpy as np
import pandas as pd
from pandas.testing import assert_frame_equal
from elasticsearch import Elasticsearch
from transformers import DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast
from haystack.document_stores.base import BaseDocumentStore, FilterType
from haystack.document_stores.memory import InMemoryDocumentStore
from haystack.document_stores import WeaviateDocumentStore
from haystack.nodes.retriever.base import BaseRetriever
from haystack.pipelines import DocumentSearchPipeline
from haystack.schema import Document
from haystack.document_stores.elasticsearch import ElasticsearchDocumentStore
from haystack.document_stores.faiss import FAISSDocumentStore
from haystack.document_stores import MilvusDocumentStore
from haystack.nodes.retriever.dense import DensePassageRetriever, EmbeddingRetriever, TableTextRetriever
from haystack.nodes.retriever.sparse import BM25Retriever, FilterRetriever, TfidfRetriever
from haystack.nodes.retriever.multimodal import MultiModalRetriever
from ..conftest import SAMPLES_PATH, MockRetriever
# TODO check if we this works with only "memory" arg
@pytest.mark.parametrize(
"retriever_with_docs,document_store_with_docs",
[
("mdr", "elasticsearch"),
("mdr", "faiss"),
("mdr", "memory"),
("mdr", "milvus"),
("dpr", "elasticsearch"),
("dpr", "faiss"),
("dpr", "memory"),
("dpr", "milvus"),
("embedding", "elasticsearch"),
("embedding", "faiss"),
("embedding", "memory"),
("embedding", "milvus"),
("bm25", "elasticsearch"),
("bm25", "memory"),
("bm25", "weaviate"),
("es_filter_only", "elasticsearch"),
("tfidf", "memory"),
],
indirect=True,
)
def test_retrieval_without_filters(retriever_with_docs: BaseRetriever, document_store_with_docs: BaseDocumentStore):
if not isinstance(retriever_with_docs, (BM25Retriever, TfidfRetriever)):
document_store_with_docs.update_embeddings(retriever_with_docs)
# NOTE: FilterRetriever simply returns all documents matching a filter,
# so without filters applied it does nothing
if not isinstance(retriever_with_docs, FilterRetriever):
# the BM25 implementation in Weaviate would NOT pick up the expected records
# just with the "Who lives in Berlin?" query, but would return empty results,
# (maybe live & Berlin are stopwords in Weaviate? :-) ), so for Weaviate we need a query with better matching
# This was caused by lack of stemming and casing in Weaviate BM25 implementation
# TODO - In Weaviate 1.17.0 there is a fix for the lack of casing, which means that once 1.17.0 is released
# this `if` can be removed, as the standard search query "Who lives in Berlin?" should work with Weaviate.
# See https://github.com/semi-technologies/weaviate/issues/2455#issuecomment-1355702003
if isinstance(document_store_with_docs, WeaviateDocumentStore):
res = retriever_with_docs.retrieve(query="name is Carla, I live in Berlin")
else:
res = retriever_with_docs.retrieve(query="Who lives in Berlin?")
assert res[0].content == "My name is Carla and I live in Berlin"
assert len(res) == 5
assert res[0].meta["name"] == "filename1"
@pytest.mark.parametrize(
"retriever_with_docs,document_store_with_docs",
[
("mdr", "elasticsearch"),
("mdr", "memory"),
("dpr", "elasticsearch"),
("dpr", "memory"),
("embedding", "elasticsearch"),
("embedding", "memory"),
("bm25", "elasticsearch"),
# TODO - add once Weaviate starts supporting filters with BM25 in Weaviate v1.18+
# ("bm25", "weaviate"),
("es_filter_only", "elasticsearch"),
],
indirect=True,
)
def test_retrieval_with_filters(retriever_with_docs: BaseRetriever, document_store_with_docs: BaseDocumentStore):
if not isinstance(retriever_with_docs, (BM25Retriever, FilterRetriever)):
document_store_with_docs.update_embeddings(retriever_with_docs)
# single filter
result = retriever_with_docs.retrieve(query="Christelle", filters={"name": ["filename3"]}, top_k=5)
assert len(result) == 1
assert type(result[0]) == Document
assert result[0].content == "My name is Christelle and I live in Paris"
assert result[0].meta["name"] == "filename3"
# multiple filters
result = retriever_with_docs.retrieve(
query="Paul", filters={"name": ["filename2"], "meta_field": ["test2", "test3"]}, top_k=5
)
assert len(result) == 1
assert type(result[0]) == Document
assert result[0].meta["name"] == "filename2"
result = retriever_with_docs.retrieve(
query="Carla", filters={"name": ["filename1"], "meta_field": ["test2", "test3"]}, top_k=5
)
assert len(result) == 0
def test_tfidf_retriever_multiple_indexes():
docs_index_0 = [Document(content="test_1"), Document(content="test_2"), Document(content="test_3")]
docs_index_1 = [Document(content="test_4"), Document(content="test_5")]
ds = InMemoryDocumentStore(index="index_0")
tfidf_retriever = TfidfRetriever(document_store=ds)
ds.write_documents(docs_index_0)
tfidf_retriever.fit(ds, index="index_0")
ds.write_documents(docs_index_1, index="index_1")
tfidf_retriever.fit(ds, index="index_1")
assert tfidf_retriever.document_counts["index_0"] == ds.get_document_count(index="index_0")
assert tfidf_retriever.document_counts["index_1"] == ds.get_document_count(index="index_1")
class MockBaseRetriever(MockRetriever):
def __init__(self, document_store: BaseDocumentStore, mock_document: Document):
self.document_store = document_store
self.mock_document = mock_document
def retrieve(
self,
query: str,
filters: dict,
top_k: Optional[int],
index: str,
headers: Optional[Dict[str, str]],
scale_score: bool,
):
return [self.mock_document]
def retrieve_batch(
self,
queries: List[str],
filters: Optional[Union[FilterType, List[Optional[FilterType]]]] = None,
top_k: Optional[int] = None,
index: str = None,
headers: Optional[Dict[str, str]] = None,
batch_size: Optional[int] = None,
scale_score: bool = None,
):
return [[self.mock_document] for _ in range(len(queries))]
def test_retrieval_empty_query(document_store: BaseDocumentStore):
# test with empty query using the run() method
mock_document = Document(id="0", content="test")
retriever = MockBaseRetriever(document_store=document_store, mock_document=mock_document)
result = retriever.run(root_node="Query", query="", filters={})
assert result[0]["documents"][0] == mock_document
result = retriever.run_batch(root_node="Query", queries=[""], filters={})
assert result[0]["documents"][0][0] == mock_document
def test_batch_retrieval_single_query(retriever_with_docs, document_store_with_docs):
if not isinstance(retriever_with_docs, (BM25Retriever, FilterRetriever, TfidfRetriever)):
document_store_with_docs.update_embeddings(retriever_with_docs)
res = retriever_with_docs.retrieve_batch(queries=["Who lives in Berlin?"])
# Expected return type: List of lists of Documents
assert isinstance(res, list)
assert isinstance(res[0], list)
assert isinstance(res[0][0], Document)
assert len(res) == 1
assert len(res[0]) == 5
assert res[0][0].content == "My name is Carla and I live in Berlin"
assert res[0][0].meta["name"] == "filename1"
def test_batch_retrieval_multiple_queries(retriever_with_docs, document_store_with_docs):
if not isinstance(retriever_with_docs, (BM25Retriever, FilterRetriever, TfidfRetriever)):
document_store_with_docs.update_embeddings(retriever_with_docs)
res = retriever_with_docs.retrieve_batch(queries=["Who lives in Berlin?", "Who lives in New York?"])
# Expected return type: list of lists of Documents
assert isinstance(res, list)
assert isinstance(res[0], list)
assert isinstance(res[0][0], Document)
assert res[0][0].content == "My name is Carla and I live in Berlin"
assert len(res[0]) == 5
assert res[0][0].meta["name"] == "filename1"
assert res[1][0].content == "My name is Paul and I live in New York"
assert len(res[1]) == 5
assert res[1][0].meta["name"] == "filename2"
@pytest.mark.parametrize("retriever_with_docs", ["bm25"], indirect=True)
def test_batch_retrieval_multiple_queries_with_filters(retriever_with_docs, document_store_with_docs):
if not isinstance(retriever_with_docs, (BM25Retriever, FilterRetriever)):
document_store_with_docs.update_embeddings(retriever_with_docs)
# Weaviate does not support BM25 with filters yet, only after Weaviate v1.18.0
# TODO - remove this once Weaviate starts supporting BM25 WITH filters
# You might also need to modify the first query, as Weaviate having problems with
# retrieving the "My name is Carla and I live in Berlin" record just with the
# "Who lives in Berlin?" BM25 query
if isinstance(document_store_with_docs, WeaviateDocumentStore):
return
res = retriever_with_docs.retrieve_batch(
queries=["Who lives in Berlin?", "Who lives in New York?"], filters=[{"name": "filename1"}, None]
)
# Expected return type: list of lists of Documents
assert isinstance(res, list)
assert isinstance(res[0], list)
assert isinstance(res[0][0], Document)
assert res[0][0].content == "My name is Carla and I live in Berlin"
assert len(res[0]) == 5
assert res[0][0].meta["name"] == "filename1"
assert res[1][0].content == "My name is Paul and I live in New York"
assert len(res[1]) == 5
assert res[1][0].meta["name"] == "filename2"
@pytest.mark.elasticsearch
def test_elasticsearch_custom_query():
client = Elasticsearch()
client.indices.delete(index="haystack_test_custom", ignore=[404])
document_store = ElasticsearchDocumentStore(
index="haystack_test_custom", content_field="custom_text_field", embedding_field="custom_embedding_field"
)
documents = [
{"content": "test_1", "meta": {"year": "2019"}},
{"content": "test_2", "meta": {"year": "2020"}},
{"content": "test_3", "meta": {"year": "2021"}},
{"content": "test_4", "meta": {"year": "2021"}},
{"content": "test_5", "meta": {"year": "2021"}},
]
document_store.write_documents(documents)
# test custom "terms" query
retriever = BM25Retriever(
document_store=document_store,
custom_query="""
{
"size": 10,
"query": {
"bool": {
"should": [{
"multi_match": {"query": ${query}, "type": "most_fields", "fields": ["content"]}}],
"filter": [{"terms": {"year": ${years}}}]}}}""",
)
results = retriever.retrieve(query="test", filters={"years": ["2020", "2021"]})
assert len(results) == 4
# test custom "term" query
retriever = BM25Retriever(
document_store=document_store,
custom_query="""
{
"size": 10,
"query": {
"bool": {
"should": [{
"multi_match": {"query": ${query}, "type": "most_fields", "fields": ["content"]}}],
"filter": [{"term": {"year": ${years}}}]}}}""",
)
results = retriever.retrieve(query="test", filters={"years": "2021"})
assert len(results) == 3
@pytest.mark.integration
@pytest.mark.parametrize(
"document_store", ["elasticsearch", "faiss", "memory", "milvus", "weaviate", "pinecone"], indirect=True
)
@pytest.mark.parametrize("retriever", ["dpr"], indirect=True)
def test_dpr_embedding(document_store: BaseDocumentStore, retriever, docs_with_ids):
document_store.return_embedding = True
document_store.write_documents(docs_with_ids)
document_store.update_embeddings(retriever=retriever)
docs = document_store.get_all_documents()
docs.sort(key=lambda d: d.id)
print([doc.id for doc in docs])
expected_values = [0.00892, 0.00780, 0.00482, -0.00626, 0.010966]
for doc, expected_value in zip(docs, expected_values):
embedding = doc.embedding
# always normalize vector as faiss returns normalized vectors and other document stores do not
embedding /= np.linalg.norm(embedding)
assert len(embedding) == 768
assert isclose(embedding[0], expected_value, rel_tol=0.01)
@pytest.mark.integration
@pytest.mark.parametrize(
"document_store", ["elasticsearch", "faiss", "memory", "milvus", "weaviate", "pinecone"], indirect=True
)
@pytest.mark.parametrize("retriever", ["retribert"], indirect=True)
@pytest.mark.embedding_dim(128)
def test_retribert_embedding(document_store, retriever, docs_with_ids):
if isinstance(document_store, WeaviateDocumentStore):
# Weaviate sets the embedding dimension to 768 as soon as it is initialized.
# We need 128 here and therefore initialize a new WeaviateDocumentStore.
document_store = WeaviateDocumentStore(index="haystack_test", embedding_dim=128, recreate_index=True)
document_store.return_embedding = True
document_store.write_documents(docs_with_ids)
document_store.update_embeddings(retriever=retriever)
docs = document_store.get_all_documents()
docs = sorted(docs, key=lambda d: d.id)
expected_values = [0.14017, 0.05975, 0.14267, 0.15099, 0.14383]
for doc, expected_value in zip(docs, expected_values):
embedding = doc.embedding
assert len(embedding) == 128
# always normalize vector as faiss returns normalized vectors and other document stores do not
embedding /= np.linalg.norm(embedding)
assert isclose(embedding[0], expected_value, rel_tol=0.001)
def test_openai_embedding_retriever_selection():
# OpenAI released (Dec 2022) a unifying embedding model called text-embedding-ada-002
# make sure that we can use it with the retriever selection
er = EmbeddingRetriever(embedding_model="text-embedding-ada-002", document_store=None)
assert er.model_format == "openai"
assert er.embedding_encoder.query_encoder_model == "text-embedding-ada-002"
assert er.embedding_encoder.doc_encoder_model == "text-embedding-ada-002"
# but also support old ada and other text-search-<modelname>-*-001 models
er = EmbeddingRetriever(embedding_model="ada", document_store=None)
assert er.model_format == "openai"
assert er.embedding_encoder.query_encoder_model == "text-search-ada-query-001"
assert er.embedding_encoder.doc_encoder_model == "text-search-ada-doc-001"
# but also support old babbage and other text-search-<modelname>-*-001 models
er = EmbeddingRetriever(embedding_model="babbage", document_store=None)
assert er.model_format == "openai"
assert er.embedding_encoder.query_encoder_model == "text-search-babbage-query-001"
assert er.embedding_encoder.doc_encoder_model == "text-search-babbage-doc-001"
# make sure that we can handle potential unreleased models
er = EmbeddingRetriever(embedding_model="text-embedding-babbage-002", document_store=None)
assert er.model_format == "openai"
assert er.embedding_encoder.query_encoder_model == "text-embedding-babbage-002"
assert er.embedding_encoder.doc_encoder_model == "text-embedding-babbage-002"
# etc etc.
@pytest.mark.integration
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["openai", "cohere"], indirect=True)
@pytest.mark.embedding_dim(1024)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None) and not os.environ.get("COHERE_API_KEY", None),
reason="Please export an env var called OPENAI_API_KEY/COHERE_API_KEY containing "
"the OpenAI/Cohere API key to run this test.",
)
def test_basic_embedding(document_store, retriever, docs_with_ids):
document_store.return_embedding = True
document_store.write_documents(docs_with_ids)
document_store.update_embeddings(retriever=retriever)
docs = document_store.get_all_documents()
docs = sorted(docs, key=lambda d: d.id)
for doc in docs:
assert len(doc.embedding) == 1024
@pytest.mark.integration
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["openai", "cohere"], indirect=True)
@pytest.mark.embedding_dim(1024)
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None) and not os.environ.get("COHERE_API_KEY", None),
reason="Please export an env var called OPENAI_API_KEY/COHERE_API_KEY containing "
"the OpenAI/Cohere API key to run this test.",
)
def test_retriever_basic_search(document_store, retriever, docs_with_ids):
document_store.return_embedding = True
document_store.write_documents(docs_with_ids)
document_store.update_embeddings(retriever=retriever)
p_retrieval = DocumentSearchPipeline(retriever)
res = p_retrieval.run(query="Madrid", params={"Retriever": {"top_k": 1}})
assert len(res["documents"]) == 1
assert "Madrid" in res["documents"][0].content
@pytest.mark.integration
@pytest.mark.parametrize("retriever", ["table_text_retriever"], indirect=True)
@pytest.mark.parametrize("document_store", ["elasticsearch", "memory"], indirect=True)
@pytest.mark.embedding_dim(512)
def test_table_text_retriever_embedding(document_store, retriever, docs):
# BM25 representation is incompatible with table retriever
if isinstance(document_store, InMemoryDocumentStore):
document_store.use_bm25 = False
document_store.return_embedding = True
document_store.write_documents(docs)
table_data = {
"Mountain": ["Mount Everest", "K2", "Kangchenjunga", "Lhotse", "Makalu"],
"Height": ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"],
}
table = pd.DataFrame(table_data)
table_doc = Document(content=table, content_type="table", id="6")
document_store.write_documents([table_doc])
document_store.update_embeddings(retriever=retriever)
docs = document_store.get_all_documents()
docs = sorted(docs, key=lambda d: d.id)
expected_values = [0.061191384, 0.038075786, 0.27447605, 0.09399721, 0.0959682]
for doc, expected_value in zip(docs, expected_values):
assert len(doc.embedding) == 512
assert isclose(doc.embedding[0], expected_value, rel_tol=0.001)
@pytest.mark.parametrize("retriever", ["dpr"], indirect=True)
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
def test_dpr_saving_and_loading(tmp_path, retriever, document_store):
retriever.save(f"{tmp_path}/test_dpr_save")
def sum_params(model):
s = []
for p in model.parameters():
n = p.cpu().data.numpy()
s.append(np.sum(n))
return sum(s)
original_sum_query = sum_params(retriever.query_encoder)
original_sum_passage = sum_params(retriever.passage_encoder)
del retriever
loaded_retriever = DensePassageRetriever.load(f"{tmp_path}/test_dpr_save", document_store)
loaded_sum_query = sum_params(loaded_retriever.query_encoder)
loaded_sum_passage = sum_params(loaded_retriever.passage_encoder)
assert abs(original_sum_query - loaded_sum_query) < 0.1
assert abs(original_sum_passage - loaded_sum_passage) < 0.1
# comparison of weights (RAM intense!)
# for p1, p2 in zip(retriever.query_encoder.parameters(), loaded_retriever.query_encoder.parameters()):
# assert (p1.data.ne(p2.data).sum() == 0)
#
# for p1, p2 in zip(retriever.passage_encoder.parameters(), loaded_retriever.passage_encoder.parameters()):
# assert (p1.data.ne(p2.data).sum() == 0)
# attributes
assert loaded_retriever.processor.embed_title == True
assert loaded_retriever.batch_size == 16
assert loaded_retriever.processor.max_seq_len_passage == 256
assert loaded_retriever.processor.max_seq_len_query == 64
# Tokenizer
assert isinstance(loaded_retriever.passage_tokenizer, DPRContextEncoderTokenizerFast)
assert isinstance(loaded_retriever.query_tokenizer, DPRQuestionEncoderTokenizerFast)
assert loaded_retriever.passage_tokenizer.do_lower_case == True
assert loaded_retriever.query_tokenizer.do_lower_case == True
assert loaded_retriever.passage_tokenizer.vocab_size == 30522
assert loaded_retriever.query_tokenizer.vocab_size == 30522
@pytest.mark.parametrize("retriever", ["table_text_retriever"], indirect=True)
@pytest.mark.embedding_dim(512)
def test_table_text_retriever_saving_and_loading(tmp_path, retriever, document_store):
retriever.save(f"{tmp_path}/test_table_text_retriever_save")
def sum_params(model):
s = []
for p in model.parameters():
n = p.cpu().data.numpy()
s.append(np.sum(n))
return sum(s)
original_sum_query = sum_params(retriever.query_encoder)
original_sum_passage = sum_params(retriever.passage_encoder)
original_sum_table = sum_params(retriever.table_encoder)
del retriever
loaded_retriever = TableTextRetriever.load(f"{tmp_path}/test_table_text_retriever_save", document_store)
loaded_sum_query = sum_params(loaded_retriever.query_encoder)
loaded_sum_passage = sum_params(loaded_retriever.passage_encoder)
loaded_sum_table = sum_params(loaded_retriever.table_encoder)
assert abs(original_sum_query - loaded_sum_query) < 0.1
assert abs(original_sum_passage - loaded_sum_passage) < 0.1
assert abs(original_sum_table - loaded_sum_table) < 0.01
# attributes
assert loaded_retriever.processor.embed_meta_fields == ["name", "section_title", "caption"]
assert loaded_retriever.batch_size == 16
assert loaded_retriever.processor.max_seq_len_passage == 256
assert loaded_retriever.processor.max_seq_len_table == 256
assert loaded_retriever.processor.max_seq_len_query == 64
# Tokenizer
assert isinstance(loaded_retriever.passage_tokenizer, DPRContextEncoderTokenizerFast)
assert isinstance(loaded_retriever.table_tokenizer, DPRContextEncoderTokenizerFast)
assert isinstance(loaded_retriever.query_tokenizer, DPRQuestionEncoderTokenizerFast)
assert loaded_retriever.passage_tokenizer.do_lower_case == True
assert loaded_retriever.table_tokenizer.do_lower_case == True
assert loaded_retriever.query_tokenizer.do_lower_case == True
assert loaded_retriever.passage_tokenizer.vocab_size == 30522
assert loaded_retriever.table_tokenizer.vocab_size == 30522
assert loaded_retriever.query_tokenizer.vocab_size == 30522
@pytest.mark.embedding_dim(128)
def test_table_text_retriever_training(tmp_path, document_store):
retriever = TableTextRetriever(
document_store=document_store,
query_embedding_model="deepset/bert-small-mm_retrieval-question_encoder",
passage_embedding_model="deepset/bert-small-mm_retrieval-passage_encoder",
table_embedding_model="deepset/bert-small-mm_retrieval-table_encoder",
use_gpu=False,
)
retriever.train(
data_dir=SAMPLES_PATH / "mmr",
train_filename="sample.json",
n_epochs=1,
n_gpu=0,
save_dir=f"{tmp_path}/test_table_text_retriever_train",
)
# Load trained model
retriever = TableTextRetriever.load(
load_dir=f"{tmp_path}/test_table_text_retriever_train", document_store=document_store
)
@pytest.mark.elasticsearch
def test_elasticsearch_highlight():
client = Elasticsearch()
client.indices.delete(index="haystack_hl_test", ignore=[404])
# Mapping the content and title field as "text" perform search on these both fields.
document_store = ElasticsearchDocumentStore(
index="haystack_hl_test",
content_field="title",
custom_mapping={"mappings": {"properties": {"content": {"type": "text"}, "title": {"type": "text"}}}},
)
documents = [
{
"title": "Green tea components",
"meta": {
"content": "The green tea plant contains a range of healthy compounds that make it into the final drink"
},
"id": "1",
},
{
"title": "Green tea catechin",
"meta": {"content": "Green tea contains a catechin called epigallocatechin-3-gallate (EGCG)."},
"id": "2",
},
{
"title": "Minerals in Green tea",
"meta": {"content": "Green tea also has small amounts of minerals that can benefit your health."},
"id": "3",
},
{
"title": "Green tea Benefits",
"meta": {"content": "Green tea does more than just keep you alert, it may also help boost brain function."},
"id": "4",
},
]
document_store.write_documents(documents)
# Enabled highlighting on "title"&"content" field only using custom query
retriever_1 = BM25Retriever(
document_store=document_store,
custom_query="""{
"size": 20,
"query": {
"bool": {
"should": [
{
"multi_match": {
"query": ${query},
"fields": [
"content^3",
"title^5"
]
}
}
]
}
},
"highlight": {
"pre_tags": [
"**"
],
"post_tags": [
"**"
],
"number_of_fragments": 3,
"fragment_size": 5,
"fields": {
"content": {},
"title": {}
}
}
}""",
)
results = retriever_1.retrieve(query="is green tea healthy")
assert len(results[0].meta["highlighted"]) == 2
assert results[0].meta["highlighted"]["title"] == ["**Green**", "**tea** components"]
assert results[0].meta["highlighted"]["content"] == ["The **green**", "**tea** plant", "range of **healthy**"]
# Enabled highlighting on "title" field only using custom query
retriever_2 = BM25Retriever(
document_store=document_store,
custom_query="""{
"size": 20,
"query": {
"bool": {
"should": [
{
"multi_match": {
"query": ${query},
"fields": [
"content^3",
"title^5"
]
}
}
]
}
},
"highlight": {
"pre_tags": [
"**"
],
"post_tags": [
"**"
],
"number_of_fragments": 3,
"fragment_size": 5,
"fields": {
"title": {}
}
}
}""",
)
results = retriever_2.retrieve(query="is green tea healthy")
assert len(results[0].meta["highlighted"]) == 1
assert results[0].meta["highlighted"]["title"] == ["**Green**", "**tea** components"]
def test_elasticsearch_filter_must_not_increase_results():
index = "filter_must_not_increase_results"
client = Elasticsearch()
client.indices.delete(index=index, ignore=[404])
documents = [
{
"content": "The green tea plant contains a range of healthy compounds that make it into the final drink",
"meta": {"content_type": "text"},
"id": "1",
},
{
"content": "Green tea contains a catechin called epigallocatechin-3-gallate (EGCG).",
"meta": {"content_type": "text"},
"id": "2",
},
{
"content": "Green tea also has small amounts of minerals that can benefit your health.",
"meta": {"content_type": "text"},
"id": "3",
},
{
"content": "Green tea does more than just keep you alert, it may also help boost brain function.",
"meta": {"content_type": "text"},
"id": "4",
},
]
doc_store = ElasticsearchDocumentStore(index=index)
doc_store.write_documents(documents)
results_wo_filter = doc_store.query(query="drink")
assert len(results_wo_filter) == 1
results_w_filter = doc_store.query(query="drink", filters={"content_type": "text"})
assert len(results_w_filter) == 1
doc_store.delete_index(index)
def test_elasticsearch_all_terms_must_match():
index = "all_terms_must_match"
client = Elasticsearch()
client.indices.delete(index=index, ignore=[404])
documents = [
{
"content": "The green tea plant contains a range of healthy compounds that make it into the final drink",
"meta": {"content_type": "text"},
"id": "1",
},
{
"content": "Green tea contains a catechin called epigallocatechin-3-gallate (EGCG).",
"meta": {"content_type": "text"},
"id": "2",
},
{
"content": "Green tea also has small amounts of minerals that can benefit your health.",
"meta": {"content_type": "text"},
"id": "3",
},
{
"content": "Green tea does more than just keep you alert, it may also help boost brain function.",
"meta": {"content_type": "text"},
"id": "4",
},
]
doc_store = ElasticsearchDocumentStore(index=index)
doc_store.write_documents(documents)
results_wo_all_terms_must_match = doc_store.query(query="drink green tea")
assert len(results_wo_all_terms_must_match) == 4
results_w_all_terms_must_match = doc_store.query(query="drink green tea", all_terms_must_match=True)
assert len(results_w_all_terms_must_match) == 1
doc_store.delete_index(index)
@pytest.mark.elasticsearch
def test_bm25retriever_all_terms_must_match():
index = "all_terms_must_match"
client = Elasticsearch()
client.indices.delete(index=index, ignore=[404])
documents = [
{
"content": "The green tea plant contains a range of healthy compounds that make it into the final drink",
"meta": {"content_type": "text"},
"id": "1",
},
{
"content": "Green tea contains a catechin called epigallocatechin-3-gallate (EGCG).",
"meta": {"content_type": "text"},
"id": "2",
},
{
"content": "Green tea also has small amounts of minerals that can benefit your health.",
"meta": {"content_type": "text"},
"id": "3",
},
{
"content": "Green tea does more than just keep you alert, it may also help boost brain function.",
"meta": {"content_type": "text"},
"id": "4",
},
]
doc_store = ElasticsearchDocumentStore(index=index)
doc_store.write_documents(documents)
retriever = BM25Retriever(document_store=doc_store)
results_wo_all_terms_must_match = retriever.retrieve(query="drink green tea")
assert len(results_wo_all_terms_must_match) == 4
retriever = BM25Retriever(document_store=doc_store, all_terms_must_match=True)
results_w_all_terms_must_match = retriever.retrieve(query="drink green tea")
assert len(results_w_all_terms_must_match) == 1
retriever = BM25Retriever(document_store=doc_store)
results_w_all_terms_must_match = retriever.retrieve(query="drink green tea", all_terms_must_match=True)
assert len(results_w_all_terms_must_match) == 1
doc_store.delete_index(index)
def test_embeddings_encoder_of_embedding_retriever_should_warn_about_model_format(caplog):
document_store = InMemoryDocumentStore()
with caplog.at_level(logging.WARNING):
EmbeddingRetriever(
document_store=document_store,
embedding_model="sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
model_format="farm",
)
assert (
"You may need to set model_format='sentence_transformers' to ensure correct loading of model."
in caplog.text
)
@pytest.mark.parametrize("retriever", ["es_filter_only"], indirect=True)
@pytest.mark.parametrize("document_store", ["elasticsearch"], indirect=True)
def test_es_filter_only(document_store, retriever):
docs = [
Document(content="Doc1", meta={"f1": "0"}),
Document(content="Doc2", meta={"f1": "0"}),
Document(content="Doc3", meta={"f1": "0"}),
Document(content="Doc4", meta={"f1": "0"}),
Document(content="Doc5", meta={"f1": "0"}),
Document(content="Doc6", meta={"f1": "0"}),
Document(content="Doc7", meta={"f1": "1"}),
Document(content="Doc8", meta={"f1": "0"}),
Document(content="Doc9", meta={"f1": "0"}),
Document(content="Doc10", meta={"f1": "0"}),
Document(content="Doc11", meta={"f1": "0"}),
Document(content="Doc12", meta={"f1": "0"}),
]
document_store.write_documents(docs)
retrieved_docs = retriever.retrieve(query="", filters={"f1": ["0"]})
assert len(retrieved_docs) == 11
#
# MultiModal
#
@pytest.fixture
def text_docs() -> List[Document]:
return [
Document(
content="My name is Paul and I live in New York",
meta={
"meta_field": "test2",
"name": "filename2",
"date_field": "2019-10-01",
"numeric_field": 5.0,
"odd_field": 0,
},
),
Document(
content="My name is Carla and I live in Berlin",
meta={
"meta_field": "test1",
"name": "filename1",
"date_field": "2020-03-01",
"numeric_field": 5.5,
"odd_field": 1,
},
),
Document(
content="My name is Christelle and I live in Paris",
meta={
"meta_field": "test3",
"name": "filename3",
"date_field": "2018-10-01",
"numeric_field": 4.5,
"odd_field": 1,
},
),
Document(
content="My name is Camila and I live in Madrid",
meta={
"meta_field": "test4",
"name": "filename4",
"date_field": "2021-02-01",
"numeric_field": 3.0,
"odd_field": 0,
},
),
Document(
content="My name is Matteo and I live in Rome",
meta={
"meta_field": "test5",
"name": "filename5",
"date_field": "2019-01-01",
"numeric_field": 0.0,
"odd_field": 1,
},
),
]
@pytest.fixture
def table_docs() -> List[Document]:
return [
Document(
content=pd.DataFrame(
{
"Mountain": ["Mount Everest", "K2", "Kangchenjunga", "Lhotse", "Makalu"],
"Height": ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"],
}
),
content_type="table",
),
Document(
content=pd.DataFrame(
{
"City": ["Paris", "Lyon", "Marseille", "Lille", "Toulouse", "Bordeaux"],
"Population": ["13,114,718", "2,280,845", "1,873,270 ", "1,510,079", "1,454,158", "1,363,711"],
}
),
content_type="table",
),
Document(
content=pd.DataFrame(
{
"City": ["Berlin", "Hamburg", "Munich", "Cologne"],
"Population": ["3,644,826", "1,841,179", "1,471,508", "1,085,664"],
}
),
content_type="table",
),
]
@pytest.fixture
def image_docs() -> List[Document]:
return [
Document(content=str(SAMPLES_PATH / "images" / imagefile), content_type="image")
for imagefile in os.listdir(SAMPLES_PATH / "images")
]
@pytest.mark.integration
def test_multimodal_text_retrieval(text_docs: List[Document]):
retriever = MultiModalRetriever(
document_store=InMemoryDocumentStore(return_embedding=True),
query_embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
document_embedding_models={"text": "sentence-transformers/multi-qa-mpnet-base-dot-v1"},
)
retriever.document_store.write_documents(text_docs)
retriever.document_store.update_embeddings(retriever=retriever)
results = retriever.retrieve(query="Who lives in Paris?")
assert results[0].content == "My name is Christelle and I live in Paris"
@pytest.mark.integration
def test_multimodal_text_retrieval_batch(text_docs: List[Document]):
retriever = MultiModalRetriever(
document_store=InMemoryDocumentStore(return_embedding=True),
query_embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
document_embedding_models={"text": "sentence-transformers/multi-qa-mpnet-base-dot-v1"},
)
retriever.document_store.write_documents(text_docs)
retriever.document_store.update_embeddings(retriever=retriever)
results = retriever.retrieve_batch(queries=["Who lives in Paris?", "Who lives in Berlin?", "Who lives in Madrid?"])
assert results[0][0].content == "My name is Christelle and I live in Paris"
assert results[1][0].content == "My name is Carla and I live in Berlin"
assert results[2][0].content == "My name is Camila and I live in Madrid"
@pytest.mark.integration
def test_multimodal_table_retrieval(table_docs: List[Document]):
retriever = MultiModalRetriever(
document_store=InMemoryDocumentStore(return_embedding=True),
query_embedding_model="deepset/all-mpnet-base-v2-table",
document_embedding_models={"table": "deepset/all-mpnet-base-v2-table"},
)
retriever.document_store.write_documents(table_docs)
retriever.document_store.update_embeddings(retriever=retriever)
results = retriever.retrieve(query="How many people live in Hamburg?")
assert_frame_equal(
results[0].content,
pd.DataFrame(
{
"City": ["Berlin", "Hamburg", "Munich", "Cologne"],
"Population": ["3,644,826", "1,841,179", "1,471,508", "1,085,664"],
}
),
)
@pytest.mark.integration
def test_multimodal_retriever_query():
retriever = MultiModalRetriever(
document_store=InMemoryDocumentStore(return_embedding=True, embedding_dim=512),
query_embedding_model="sentence-transformers/clip-ViT-B-32",
document_embedding_models={"image": "sentence-transformers/clip-ViT-B-32"},
)
res_emb = retriever.embed_queries(["dummy query 1", "dummy query 1"])
assert np.array_equal(res_emb[0], res_emb[1])
@pytest.mark.integration
def test_multimodal_image_retrieval(image_docs: List[Document]):
retriever = MultiModalRetriever(
document_store=InMemoryDocumentStore(return_embedding=True, embedding_dim=512),
query_embedding_model="sentence-transformers/clip-ViT-B-32",
document_embedding_models={"image": "sentence-transformers/clip-ViT-B-32"},
)
retriever.document_store.write_documents(image_docs)
retriever.document_store.update_embeddings(retriever=retriever)
results = retriever.retrieve(query="What's a cat?")
assert str(results[0].content) == str(SAMPLES_PATH / "images" / "cat.jpg")
@pytest.mark.skip("Not working yet as intended")
@pytest.mark.integration
def test_multimodal_text_image_retrieval(text_docs: List[Document], image_docs: List[Document]):
retriever = MultiModalRetriever(
document_store=InMemoryDocumentStore(return_embedding=True, embedding_dim=512),
query_embedding_model="sentence-transformers/clip-ViT-B-32",
document_embedding_models={
"text": "sentence-transformers/clip-ViT-B-32",
"image": "sentence-transformers/clip-ViT-B-32",
},
)
retriever.document_store.write_documents(image_docs)
retriever.document_store.write_documents(text_docs)
retriever.document_store.update_embeddings(retriever=retriever)
results = retriever.retrieve(query="What's Paris?")
text_results = [result for result in results if result.content_type == "text"]
image_results = [result for result in results if result.content_type == "image"]
assert str(image_results[0].content) == str(SAMPLES_PATH / "images" / "paris.jpg")
assert text_results[0].content == "My name is Christelle and I live in Paris"