mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-25 01:40:22 +00:00
166 lines
7.1 KiB
Python
166 lines
7.1 KiB
Python
import math
|
|
|
|
import pytest
|
|
|
|
from haystack import Document
|
|
from haystack.reader.base import BaseReader
|
|
from haystack.reader.farm import FARMReader
|
|
|
|
|
|
def test_reader_basic(reader):
|
|
assert reader is not None
|
|
assert isinstance(reader, BaseReader)
|
|
|
|
|
|
def test_output(prediction):
|
|
assert prediction is not None
|
|
assert prediction["query"] == "Who lives in Berlin?"
|
|
assert prediction["answers"][0]["answer"] == "Carla"
|
|
assert prediction["answers"][0]["offset_start"] == 11
|
|
assert prediction["answers"][0]["offset_end"] == 16
|
|
assert prediction["answers"][0]["probability"] <= 1
|
|
assert prediction["answers"][0]["probability"] >= 0
|
|
assert prediction["answers"][0]["context"] == "My name is Carla and I live in Berlin"
|
|
assert len(prediction["answers"]) == 5
|
|
|
|
|
|
@pytest.mark.slow
|
|
def test_no_answer_output(no_answer_prediction):
|
|
assert no_answer_prediction is not None
|
|
assert no_answer_prediction["query"] == "What is the meaning of life?"
|
|
assert math.isclose(no_answer_prediction["no_ans_gap"], -13.048564434051514, rel_tol=0.0001)
|
|
assert no_answer_prediction["answers"][0]["answer"] is None
|
|
assert no_answer_prediction["answers"][0]["offset_start"] == 0
|
|
assert no_answer_prediction["answers"][0]["offset_end"] == 0
|
|
assert no_answer_prediction["answers"][0]["probability"] <= 1
|
|
assert no_answer_prediction["answers"][0]["probability"] >= 0
|
|
assert no_answer_prediction["answers"][0]["context"] == None
|
|
assert no_answer_prediction["answers"][0]["document_id"] == None
|
|
answers = [x["answer"] for x in no_answer_prediction["answers"]]
|
|
assert answers.count(None) == 1
|
|
assert len(no_answer_prediction["answers"]) == 5
|
|
|
|
|
|
# TODO Directly compare farm and transformers reader outputs
|
|
# TODO checks to see that model is responsive to input arguments e.g. context_window_size - topk
|
|
|
|
|
|
@pytest.mark.slow
|
|
def test_prediction_attributes(prediction):
|
|
# TODO FARM's prediction also has no_ans_gap
|
|
attributes_gold = ["query", "answers"]
|
|
for ag in attributes_gold:
|
|
assert ag in prediction
|
|
|
|
|
|
def test_answer_attributes(prediction):
|
|
# TODO Transformers answer also has meta key
|
|
# TODO FARM answer has offset_start_in_doc, offset_end_in_doc
|
|
answer = prediction["answers"][0]
|
|
attributes_gold = ['answer', 'score', 'probability', 'context', 'offset_start', 'offset_end', 'document_id']
|
|
for ag in attributes_gold:
|
|
assert ag in answer
|
|
|
|
|
|
@pytest.mark.slow
|
|
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
|
|
@pytest.mark.parametrize("window_size", [10, 15, 20])
|
|
def test_context_window_size(reader, test_docs_xs, window_size):
|
|
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
|
|
|
|
assert isinstance(reader, FARMReader)
|
|
|
|
old_window_size = reader.inferencer.model.prediction_heads[0].context_window_size
|
|
reader.inferencer.model.prediction_heads[0].context_window_size = window_size
|
|
|
|
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=5)
|
|
for answer in prediction["answers"]:
|
|
# If the extracted answer is larger than the context window, the context window is expanded.
|
|
# If the extracted answer is odd in length, the resulting context window is one less than context_window_size
|
|
# due to rounding (See FARM's QACandidate)
|
|
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
|
|
if len(answer["answer"]) <= window_size:
|
|
assert len(answer["context"]) in [window_size, window_size - 1]
|
|
else:
|
|
assert len(answer["answer"]) == len(answer["context"])
|
|
|
|
reader.inferencer.model.prediction_heads[0].context_window_size = old_window_size
|
|
|
|
# TODO Need to test transformers reader
|
|
# TODO Currently the behaviour of context_window_size in FARMReader and TransformerReader is different
|
|
|
|
|
|
@pytest.mark.parametrize("reader", ["farm"], indirect=True)
|
|
@pytest.mark.parametrize("top_k", [2, 5, 10])
|
|
def test_top_k(reader, test_docs_xs, top_k):
|
|
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
|
|
|
|
assert isinstance(reader, FARMReader)
|
|
|
|
old_top_k_per_candidate = reader.top_k_per_candidate
|
|
reader.top_k_per_candidate = 4
|
|
reader.inferencer.model.prediction_heads[0].n_best = reader.top_k_per_candidate + 1
|
|
try:
|
|
old_top_k_per_sample = reader.inferencer.model.prediction_heads[0].n_best_per_sample
|
|
reader.inferencer.model.prediction_heads[0].n_best_per_sample = 4
|
|
except:
|
|
print("WARNING: Could not set `top_k_per_sample` in FARM. Please update FARM version.")
|
|
|
|
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=top_k)
|
|
assert len(prediction["answers"]) == top_k
|
|
|
|
reader.top_k_per_candidate = old_top_k_per_candidate
|
|
reader.inferencer.model.prediction_heads[0].n_best = reader.top_k_per_candidate + 1
|
|
try:
|
|
reader.inferencer.model.prediction_heads[0].n_best_per_sample = old_top_k_per_sample
|
|
except:
|
|
print("WARNING: Could not set `top_k_per_sample` in FARM. Please update FARM version.")
|
|
|
|
|
|
def test_farm_reader_update_params(test_docs_xs):
|
|
reader = FARMReader(
|
|
model_name_or_path="deepset/roberta-base-squad2",
|
|
use_gpu=False,
|
|
no_ans_boost=0,
|
|
num_processes=0
|
|
)
|
|
|
|
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
|
|
|
|
# original reader
|
|
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
|
|
assert len(prediction["answers"]) == 3
|
|
assert prediction["answers"][0]["answer"] == "Carla"
|
|
|
|
# update no_ans_boost
|
|
reader.update_parameters(
|
|
context_window_size=100, no_ans_boost=100, return_no_answer=True, max_seq_len=384, doc_stride=128
|
|
)
|
|
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
|
|
assert len(prediction["answers"]) == 3
|
|
assert prediction["answers"][0]["answer"] is None
|
|
|
|
# update no_ans_boost
|
|
reader.update_parameters(
|
|
context_window_size=100, no_ans_boost=0, return_no_answer=False, max_seq_len=384, doc_stride=128
|
|
)
|
|
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
|
|
assert len(prediction["answers"]) == 3
|
|
assert None not in [ans["answer"] for ans in prediction["answers"]]
|
|
|
|
# update context_window_size
|
|
reader.update_parameters(context_window_size=6, no_ans_boost=-10, max_seq_len=384, doc_stride=128)
|
|
prediction = reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
|
|
assert len(prediction["answers"]) == 3
|
|
assert len(prediction["answers"][0]["context"]) == 6
|
|
|
|
# update doc_stride with invalid value
|
|
with pytest.raises(Exception):
|
|
reader.update_parameters(context_window_size=100, no_ans_boost=-10, max_seq_len=384, doc_stride=999)
|
|
reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
|
|
|
|
# update max_seq_len with invalid value
|
|
with pytest.raises(Exception):
|
|
reader.update_parameters(context_window_size=6, no_ans_boost=-10, max_seq_len=99, doc_stride=128)
|
|
reader.predict(query="Who lives in Berlin?", documents=docs, top_k=3)
|