haystack/test/prompt/invocation_layer/test_sagemaker_hf_text_gen.py

245 lines
9.5 KiB
Python

import os
from unittest.mock import patch, MagicMock, Mock
import pytest
from haystack.lazy_imports import LazyImport
from haystack.errors import SageMakerConfigurationError
from haystack.nodes.prompt.invocation_layer import SageMakerHFTextGenerationInvocationLayer
with LazyImport() as boto3_import:
from botocore.exceptions import BotoCoreError
# create a fixture with mocked boto3 client and session
@pytest.fixture
def mock_boto3_session():
with patch("boto3.Session") as mock_client:
yield mock_client
@pytest.fixture
def mock_prompt_handler():
with patch("haystack.nodes.prompt.invocation_layer.handlers.DefaultPromptHandler") as mock_prompt_handler:
yield mock_prompt_handler
@pytest.mark.unit
def test_default_constructor(mock_auto_tokenizer, mock_boto3_session):
"""
Test that the default constructor sets the correct values
"""
layer = SageMakerHFTextGenerationInvocationLayer(
model_name_or_path="some_fake_model",
max_length=99,
aws_access_key_id="some_fake_id",
aws_secret_access_key="some_fake_key",
aws_session_token="some_fake_token",
aws_profile_name="some_fake_profile",
aws_region_name="fake_region",
)
assert layer.max_length == 99
assert layer.model_name_or_path == "some_fake_model"
# assert mocked boto3 client called exactly once
mock_boto3_session.assert_called_once()
# assert mocked boto3 client was called with the correct parameters
mock_boto3_session.assert_called_with(
aws_access_key_id="some_fake_id",
aws_secret_access_key="some_fake_key",
aws_session_token="some_fake_token",
profile_name="some_fake_profile",
region_name="fake_region",
)
@pytest.mark.unit
def test_constructor_with_model_kwargs(mock_auto_tokenizer, mock_boto3_session):
"""
Test that model_kwargs are correctly set in the constructor
and that model_kwargs_rejected are correctly filtered out
"""
model_kwargs = {"temperature": 0.7, "do_sample": True, "stream": True}
model_kwargs_rejected = {"fake_param": 0.7, "another_fake_param": 1}
layer = SageMakerHFTextGenerationInvocationLayer(
model_name_or_path="some_fake_model", **model_kwargs, **model_kwargs_rejected
)
assert "temperature" in layer.model_input_kwargs
assert "do_sample" in layer.model_input_kwargs
assert "fake_param" not in layer.model_input_kwargs
assert "another_fake_param" not in layer.model_input_kwargs
@pytest.mark.unit
def test_invoke_with_no_kwargs(mock_auto_tokenizer, mock_boto3_session):
"""
Test that invoke raises an error if no prompt is provided
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="some_fake_model")
with pytest.raises(ValueError) as e:
layer.invoke()
assert e.match("No prompt provided.")
@pytest.mark.unit
def test_invoke_with_stop_words(mock_auto_tokenizer, mock_boto3_session):
"""
Test stop words are correctly passed to HTTP POST request
"""
stop_words = ["but", "not", "bye"]
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="some_model", api_key="fake_key")
with patch("haystack.nodes.prompt.invocation_layer.SageMakerHFTextGenerationInvocationLayer._post") as mock_post:
# Mock the response, need to return a list of dicts
mock_post.return_value = MagicMock(text='[{"generated_text": "Hello"}]')
layer.invoke(prompt="Tell me hello", stop_words=stop_words)
assert mock_post.called
@pytest.mark.unit
def test_short_prompt_is_not_truncated(mock_boto3_session):
# prompt of length 5 + max_length of 3 = 8, which is less than model_max_length of 10, so no resize
mock_tokens = ["I", "am", "a", "tokenized", "prompt"]
mock_prompt = "I am a tokenized prompt"
mock_tokenizer = Mock()
mock_tokenizer.tokenize.return_value = mock_tokens
with patch("transformers.AutoTokenizer.from_pretrained", return_value=mock_tokenizer):
layer = SageMakerHFTextGenerationInvocationLayer("some_fake_endpoint", max_length=3, model_max_length=10)
result = layer._ensure_token_limit(mock_prompt)
assert result == mock_prompt
@pytest.mark.unit
def test_long_prompt_is_truncated(mock_boto3_session):
# prompt of length 8 + max_length of 3 = 11, which is more than model_max_length of 10, so we resize to 7
mock_tokens = ["I", "am", "a", "tokenized", "prompt", "of", "length", "eight"]
correct_result = "I am a tokenized prompt of length"
mock_tokenizer = Mock()
mock_tokenizer.tokenize.return_value = mock_tokens
mock_tokenizer.convert_tokens_to_string.return_value = correct_result
with patch("transformers.AutoTokenizer.from_pretrained", return_value=mock_tokenizer):
layer = SageMakerHFTextGenerationInvocationLayer("some_fake_endpoint", max_length=3, model_max_length=10)
result = layer._ensure_token_limit("I am a tokenized prompt of length eight")
assert result == correct_result
@pytest.mark.unit
def test_empty_model_name():
with pytest.raises(ValueError, match="cannot be None or empty string"):
SageMakerHFTextGenerationInvocationLayer(model_name_or_path="")
@pytest.mark.unit
def test_streaming_init_kwarg(mock_auto_tokenizer, mock_boto3_session):
"""
Test stream parameter passed as init kwarg is correctly logged as not supported
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="irrelevant", stream=True)
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
layer.invoke(prompt="Tell me hello")
@pytest.mark.unit
def test_streaming_invoke_kwarg(mock_auto_tokenizer, mock_boto3_session):
"""
Test stream parameter passed as invoke kwarg is correctly logged as not supported
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="irrelevant")
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
layer.invoke(prompt="Tell me hello", stream=True)
@pytest.mark.unit
def test_streaming_handler_init_kwarg(mock_auto_tokenizer, mock_boto3_session):
"""
Test stream_handler parameter passed as init kwarg is correctly logged as not supported
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="irrelevant", stream_handler=Mock())
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
layer.invoke(prompt="Tell me hello")
@pytest.mark.unit
def test_streaming_handler_invoke_kwarg(mock_auto_tokenizer, mock_boto3_session):
"""
Test stream_handler parameter passed as invoke kwarg is correctly logged as not supported
"""
layer = SageMakerHFTextGenerationInvocationLayer(model_name_or_path="irrelevant")
with pytest.raises(SageMakerConfigurationError, match="SageMaker model response streaming is not supported yet"):
layer.invoke(prompt="Tell me hello", stream_handler=Mock())
@pytest.mark.unit
def test_supports_for_valid_aws_configuration():
"""
Test that the SageMakerInvocationLayer identifies a valid SageMaker Inference endpoint via the supports() method
"""
with patch("boto3.Session") as mock_boto3_session:
mock_boto3_session.return_value.client.return_value.invoke_endpoint.return_value = True
supported = SageMakerHFTextGenerationInvocationLayer.supports(
model_name_or_path="some_sagemaker_deployed_model", aws_profile_name="some_real_profile"
)
assert supported
assert mock_boto3_session.called
_, called_kwargs = mock_boto3_session.call_args
assert called_kwargs["profile_name"] == "some_real_profile"
@pytest.mark.unit
def test_supports_not_on_invalid_aws_profile_name():
"""
Test that the SageMakerInvocationLayer raises SageMakerConfigurationError when the profile name is invalid
"""
with patch("boto3.Session") as mock_boto3_session:
mock_boto3_session.side_effect = BotoCoreError()
with pytest.raises(SageMakerConfigurationError) as exc_info:
supported = SageMakerHFTextGenerationInvocationLayer.supports(
model_name_or_path="some_fake_model", aws_profile_name="some_fake_profile"
)
assert "Failed to initialize the session" in exc_info.value
assert not supported
@pytest.mark.skipif(
not os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT", None), reason="Skipping because SageMaker not configured"
)
@pytest.mark.integration
def test_supports_triggered_for_valid_sagemaker_endpoint():
"""
Test that the SageMakerInvocationLayer identifies a valid SageMaker Inference endpoint via the supports() method
"""
model_name_or_path = os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT")
assert SageMakerHFTextGenerationInvocationLayer.supports(model_name_or_path=model_name_or_path)
@pytest.mark.skipif(
not os.environ.get("TEST_SAGEMAKER_MODEL_ENDPOINT", None), reason="Skipping because SageMaker not configured"
)
@pytest.mark.integration
def test_supports_not_triggered_for_invalid_iam_profile():
"""
Test that the SageMakerInvocationLayer identifies an invalid SageMaker Inference endpoint
(in this case because of an invalid IAM AWS Profile via the supports() method)
"""
assert not SageMakerHFTextGenerationInvocationLayer.supports(model_name_or_path="fake_endpoint")
assert not SageMakerHFTextGenerationInvocationLayer.supports(
model_name_or_path="fake_endpoint", aws_profile_name="invalid-profile"
)