Julian Risch f9d2f786ca
Replace FARM import statements; add dependencies (#1492)
* Replace FARM import statements; add dependencies

* Add InferenceProc., TextCl.Proc., TextPairCl.Proc.

* Remove FARMRanker, add type annotations, rename max_sample

* Add sample_to_features_text for InferenceProc.

* Fix type annotations: model_name_or_path is str not Path

* Fix mypy errors: implement _create_dataset in TextCl.Proc.

* Add task_type "embeddings" in Inferencer

* Allow loading AdaptiveModel for embedding task

* Add SQuAD eval metrics; enable InferenceProc for embedding task

* Add baskets as param to log_samples and handle empty basket list in log_samples

* Remove unused dependencies

* Remove FARMClassifier (doc classificer) due to ref to TextClassificationHead

* Remove FARMRanker and Classifier from doc generation scripts

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2021-09-28 16:34:24 +02:00

91 lines
3.6 KiB
Python

from utils import get_document_store, index_to_doc_store, get_reader
from haystack.preprocessor.utils import eval_data_from_json
from haystack.modeling.data_handler.utils import _download_extract_downstream_data
from pathlib import Path
import pandas as pd
from results_to_json import reader as reader_json
from templates import READER_TEMPLATE
import json
import logging
logger = logging.getLogger(__name__)
reader_models_full = ["deepset/roberta-base-squad2", "deepset/minilm-uncased-squad2",
"deepset/bert-base-cased-squad2", "deepset/bert-large-uncased-whole-word-masking-squad2",
"deepset/xlm-roberta-large-squad2", "distilbert-base-uncased-distilled-squad"]
reader_models_ci = ["deepset/minilm-uncased-squad2"]
reader_types = ["farm"]
data_dir = Path("../../data/squad20")
filename = "dev-v2.0.json"
# Note that this number is approximate - it was calculated using Bert Base Cased
# This number could vary when using a different tokenizer
n_total_passages = 12350
n_total_docs = 1204
results_file = "reader_results.csv"
reader_json_file = "../../docs/_src/benchmarks/reader_performance.json"
doc_index = "eval_document"
label_index = "label"
def benchmark_reader(ci=False, update_json=False, save_markdown=False, **kwargs):
if ci:
reader_models = reader_models_ci
else:
reader_models = reader_models_full
reader_results = []
doc_store = get_document_store("elasticsearch")
# download squad data
_download_extract_downstream_data(input_file=data_dir/filename)
docs, labels = eval_data_from_json(data_dir/filename, max_docs=None)
index_to_doc_store(doc_store, docs, None, labels)
for reader_name in reader_models:
for reader_type in reader_types:
logger.info(f"##### Start reader run - model:{reader_name}, type: {reader_type} ##### ")
try:
reader = get_reader(reader_name, reader_type)
results = reader.eval(document_store=doc_store,
doc_index=doc_index,
label_index=label_index,
device="cuda")
# print(results)
results["passages_per_second"] = n_total_passages / results["reader_time"]
results["reader"] = reader_name
results["error"] = ""
reader_results.append(results)
except Exception as e:
results = {'EM': 0.,
'f1': 0.,
'top_n_accuracy': 0.,
'top_n': 0,
'reader_time': 0.,
"passages_per_second": 0.,
"seconds_per_query": 0.,
'reader': reader_name,
"error": e}
reader_results.append(results)
reader_df = pd.DataFrame.from_records(reader_results)
reader_df.to_csv(results_file)
if save_markdown:
md_file = results_file.replace(".csv", ".md")
with open(md_file, "w") as f:
f.write(str(reader_df.to_markdown()))
doc_store.delete_all_documents(label_index)
doc_store.delete_all_documents(doc_index)
if update_json:
populate_reader_json()
def populate_reader_json():
reader_results = reader_json()
template = READER_TEMPLATE
template["data"] = reader_results
json.dump(template, open(reader_json_file, "w"), indent=4)
if __name__ == "__main__":
benchmark_reader(ci=True, update_json=True, save_markdown=True)