mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-09-03 05:13:34 +00:00

* first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * Add first draft of TableReader * renam label.question -> label.query. Allow sorting of Answers. * Add calculation of answer scores * WIP primitives * Adapt input and output to new primitives * Add doc strings * Add tests * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * Adapt answer format * Add latest docstring and tutorial changes * keep meta data of answers in reader.run() * Fix mypy * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * Allow inference on GPU * Remove automatic aggregation * Add automatic aggregation * Add latest docstring and tutorial changes * Add torch-scatter dependency * Add wheel to torch-scatter dependency * Fix requirements * Fix requirements * Fix requirements * Adapt setup.py to allow for wheels * Fix requirements * Fix requirements * Add type hints and code snippet * Add latest docstring and tutorial changes Co-authored-by: Malte Pietsch <malte.pietsch@deepset.ai> Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
75 lines
3.4 KiB
Python
75 lines
3.4 KiB
Python
import pandas as pd
|
|
|
|
from haystack import Document, Pipeline
|
|
|
|
|
|
def test_table_reader(table_reader):
|
|
data = {
|
|
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
|
|
"age": ["57", "46", "60"],
|
|
"number of movies": ["87", "53", "69"],
|
|
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
|
|
}
|
|
table = pd.DataFrame(data)
|
|
|
|
query = "When was DiCaprio born?"
|
|
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
|
|
assert prediction["answers"][0].answer == "10 june 1996"
|
|
assert prediction["answers"][0].offsets_in_context[0].start == 7
|
|
assert prediction["answers"][0].offsets_in_context[0].end == 8
|
|
|
|
# test aggregation
|
|
query = "How old are DiCaprio and Pitt on average?"
|
|
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
|
|
assert prediction["answers"][0].answer == "51.5"
|
|
assert prediction["answers"][0].meta["answer_cells"] == ["57", "46"]
|
|
assert prediction["answers"][0].meta["aggregation_operator"] == "AVERAGE"
|
|
assert prediction["answers"][0].offsets_in_context[0].start == 1
|
|
assert prediction["answers"][0].offsets_in_context[0].end == 2
|
|
assert prediction["answers"][0].offsets_in_context[1].start == 5
|
|
assert prediction["answers"][0].offsets_in_context[1].end == 6
|
|
|
|
|
|
def test_table_reader_in_pipeline(table_reader):
|
|
pipeline = Pipeline()
|
|
pipeline.add_node(table_reader, "TableReader", ["Query"])
|
|
data = {
|
|
"actors": ["brad pitt", "leonardo di caprio", "george clooney"],
|
|
"age": ["57", "46", "60"],
|
|
"number of movies": ["87", "53", "69"],
|
|
"date of birth": ["7 february 1967", "10 june 1996", "28 november 1967"],
|
|
}
|
|
|
|
table = pd.DataFrame(data)
|
|
query = "Which actors played in more than 60 movies?"
|
|
|
|
prediction = pipeline.run(query=query, documents=[Document(content=table, content_type="table")])
|
|
|
|
assert prediction["answers"][0].answer == "brad pitt, george clooney"
|
|
assert prediction["answers"][0].meta["aggregation_operator"] == "NONE"
|
|
assert prediction["answers"][0].offsets_in_context[0].start == 0
|
|
assert prediction["answers"][0].offsets_in_context[0].end == 1
|
|
assert prediction["answers"][0].offsets_in_context[1].start == 8
|
|
assert prediction["answers"][0].offsets_in_context[1].end == 9
|
|
|
|
|
|
def test_table_reader_aggregation(table_reader):
|
|
data = {
|
|
"Mountain": ["Mount Everest", "K2", "Kangchenjunga", "Lhotse", "Makalu"],
|
|
"Height": ["8848m", "8,611 m", "8 586m", "8 516 m", "8,485m"]
|
|
}
|
|
table = pd.DataFrame(data)
|
|
|
|
query = "How tall are all mountains on average?"
|
|
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
|
|
assert prediction["answers"][0].answer == "8609.2 m"
|
|
assert prediction["answers"][0].meta["aggregation_operator"] == "AVERAGE"
|
|
assert prediction["answers"][0].meta["answer_cells"] == ['8848m', '8,611 m', '8 586m', '8 516 m', '8,485m']
|
|
|
|
query = "How tall are all mountains together?"
|
|
prediction = table_reader.predict(query=query, documents=[Document(content=table, content_type="table")])
|
|
assert prediction["answers"][0].answer == "43046.0 m"
|
|
assert prediction["answers"][0].meta["aggregation_operator"] == "SUM"
|
|
assert prediction["answers"][0].meta["answer_cells"] == ['8848m', '8,611 m', '8 586m', '8 516 m', '8,485m']
|
|
|