mirror of
https://github.com/deepset-ai/haystack.git
synced 2026-01-05 11:38:20 +00:00
197 lines
8.4 KiB
Plaintext
197 lines
8.4 KiB
Plaintext
---
|
||
title: "PipelineTool"
|
||
id: pipelinetool
|
||
slug: "/pipelinetool"
|
||
description: "Wraps a Haystack pipeline so an LLM can call it as a tool."
|
||
---
|
||
|
||
# PipelineTool
|
||
|
||
Wraps a Haystack pipeline so an LLM can call it as a tool.
|
||
|
||
<div className="key-value-table">
|
||
|
||
| | |
|
||
| --- | --- |
|
||
| **Mandatory init variables** | `pipeline`: The Haystack pipeline to wrap <br /> <br />`name`: The name of the tool <br /> <br />`description`: Description of the tool |
|
||
| **API reference** | [Tools](/reference/tools-api) |
|
||
| **GitHub link** | https://github.com/deepset-ai/haystack/blob/main/haystack/tools/pipeline_tool.py |
|
||
|
||
</div>
|
||
|
||
## Overview
|
||
|
||
`PipelineTool` lets you wrap a whole Haystack pipeline and expose it as a tool that an LLM can call.
|
||
It replaces the older workflow of first wrapping a pipeline in a `SuperComponent` and then passing that to
|
||
`ComponentTool`.
|
||
|
||
`PipelineTool` builds the tool parameter schema from the pipeline’s input sockets and uses the underlying components’ docstrings for input descriptions. You can choose which pipeline inputs and outputs to expose with
|
||
`input_mapping` and `output_mapping`. It works with both `Pipeline` and `AsyncPipeline` and can be used in a pipeline with `ToolInvoker` or directly with the `Agent` component.
|
||
|
||
### Parameters
|
||
|
||
- `pipeline` is mandatory and must be a `Pipeline` or `AsyncPipeline` instance.
|
||
- `name` is mandatory and specifies the tool name.
|
||
- `description` is mandatory and explains what the tool does.
|
||
- `input_mapping` is optional. It maps tool input names to pipeline input socket paths. If omitted, a default
|
||
mapping is created from all pipeline inputs.
|
||
- `output_mapping` is optional. It maps pipeline output socket paths to tool output names. If omitted, a default
|
||
mapping is created from all pipeline outputs.
|
||
|
||
## Usage
|
||
|
||
### Basic Usage
|
||
|
||
You can create a `PipelineTool` from any existing Haystack pipeline:
|
||
|
||
```python
|
||
from haystack import Document, Pipeline
|
||
from haystack.tools import PipelineTool
|
||
from haystack.components.retrievers.in_memory import InMemoryBM25Retriever
|
||
from haystack.components.rankers.sentence_transformers_similarity import SentenceTransformersSimilarityRanker
|
||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||
|
||
## Create your pipeline
|
||
document_store = InMemoryDocumentStore()
|
||
## Add some example documents
|
||
document_store.write_documents([
|
||
Document(content="Nikola Tesla was a Serbian-American inventor and electrical engineer."),
|
||
Document(content="Alternating current (AC) is an electric current which periodically reverses direction."),
|
||
Document(content="Thomas Edison promoted direct current (DC) and competed with AC in the War of Currents."),
|
||
])
|
||
retrieval_pipeline = Pipeline()
|
||
retrieval_pipeline.add_component("bm25_retriever", InMemoryBM25Retriever(document_store=document_store))
|
||
retrieval_pipeline.add_component("ranker", SentenceTransformersSimilarityRanker(model="cross-encoder/ms-marco-MiniLM-L-6-v2"))
|
||
retrieval_pipeline.connect("bm25_retriever.documents", "ranker.documents")
|
||
|
||
## Wrap the pipeline as a tool
|
||
retrieval_tool = PipelineTool(
|
||
pipeline=retrieval_pipeline,
|
||
input_mapping={"query": ["bm25_retriever.query", "ranker.query"]},
|
||
output_mapping={"ranker.documents": "documents"},
|
||
name="retrieval_tool",
|
||
description="Search short articles about Nikola Tesla, AC electricity, and related inventors",
|
||
)
|
||
```
|
||
|
||
### In a pipeline
|
||
|
||
Create a `PipelineTool` from a retrieval pipeline and let an `OpenAIChatGenerator` use it as a tool in a pipeline.
|
||
|
||
```python
|
||
from haystack import Document, Pipeline
|
||
from haystack.tools import PipelineTool
|
||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||
from haystack.components.embedders.sentence_transformers_text_embedder import SentenceTransformersTextEmbedder
|
||
from haystack.components.embedders.sentence_transformers_document_embedder import SentenceTransformersDocumentEmbedder
|
||
from haystack.components.retrievers import InMemoryEmbeddingRetriever
|
||
from haystack.components.generators.chat import OpenAIChatGenerator
|
||
from haystack.components.tools.tool_invoker import ToolInvoker
|
||
from haystack.dataclasses import ChatMessage
|
||
|
||
## Initialize a document store and add some documents
|
||
document_store = InMemoryDocumentStore()
|
||
document_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")
|
||
documents = [
|
||
Document(content="Nikola Tesla was a Serbian-American inventor and electrical engineer."),
|
||
Document(content="He is best known for his contributions to the design of the modern alternating current (AC) electricity supply system."),
|
||
]
|
||
document_embedder.warm_up()
|
||
docs_with_embeddings = document_embedder.run(documents=documents)["documents"]
|
||
document_store.write_documents(docs_with_embeddings)
|
||
|
||
## Build a simple retrieval pipeline
|
||
retrieval_pipeline = Pipeline()
|
||
retrieval_pipeline.add_component(
|
||
"embedder", SentenceTransformersTextEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")
|
||
)
|
||
retrieval_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
|
||
retrieval_pipeline.connect("embedder.embedding", "retriever.query_embedding")
|
||
|
||
## Wrap the pipeline as a tool
|
||
retriever_tool = PipelineTool(
|
||
pipeline=retrieval_pipeline,
|
||
input_mapping={"query": ["embedder.text"]},
|
||
output_mapping={"retriever.documents": "documents"},
|
||
name="document_retriever",
|
||
description="For any questions about Nikola Tesla, always use this tool",
|
||
)
|
||
|
||
## Create pipeline with OpenAIChatGenerator and ToolInvoker
|
||
pipeline = Pipeline()
|
||
pipeline.add_component("llm", OpenAIChatGenerator(model="gpt-4o-mini", tools=[retriever_tool]))
|
||
pipeline.add_component("tool_invoker", ToolInvoker(tools=[retriever_tool]))
|
||
|
||
## Connect components
|
||
pipeline.connect("llm.replies", "tool_invoker.messages")
|
||
|
||
message = ChatMessage.from_user("Use the document retriever tool to find information about Nikola Tesla")
|
||
|
||
## Run pipeline
|
||
result = pipeline.run({"llm": {"messages": [message]}})
|
||
|
||
print(result)
|
||
```
|
||
|
||
### With the Agent Component
|
||
|
||
Use `PipelineTool` with the [Agent](../pipeline-components/agents-1/agent.mdx) component. The `Agent` includes a `ToolInvoker` and your chosen ChatGenerator to execute tool calls and process tool results.
|
||
|
||
```python
|
||
from haystack import Document, Pipeline
|
||
from haystack.tools import PipelineTool
|
||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||
from haystack.components.embedders.sentence_transformers_text_embedder import SentenceTransformersTextEmbedder
|
||
from haystack.components.embedders.sentence_transformers_document_embedder import SentenceTransformersDocumentEmbedder
|
||
from haystack.components.retrievers import InMemoryEmbeddingRetriever
|
||
from haystack.components.generators.chat import OpenAIChatGenerator
|
||
from haystack.components.agents import Agent
|
||
from haystack.dataclasses import ChatMessage
|
||
|
||
## Initialize a document store and add some documents
|
||
document_store = InMemoryDocumentStore()
|
||
document_embedder = SentenceTransformersDocumentEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")
|
||
documents = [
|
||
Document(content="Nikola Tesla was a Serbian-American inventor and electrical engineer."),
|
||
Document(content="He is best known for his contributions to the design of the modern alternating current (AC) electricity supply system."),
|
||
]
|
||
document_embedder.warm_up()
|
||
docs_with_embeddings = document_embedder.run(documents=documents)["documents"]
|
||
document_store.write_documents(docs_with_embeddings)
|
||
|
||
## Build a simple retrieval pipeline
|
||
retrieval_pipeline = Pipeline()
|
||
retrieval_pipeline.add_component(
|
||
"embedder", SentenceTransformersTextEmbedder(model="sentence-transformers/all-MiniLM-L6-v2")
|
||
)
|
||
retrieval_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store))
|
||
retrieval_pipeline.connect("embedder.embedding", "retriever.query_embedding")
|
||
|
||
## Wrap the pipeline as a tool
|
||
retriever_tool = PipelineTool(
|
||
pipeline=retrieval_pipeline,
|
||
input_mapping={"query": ["embedder.text"]},
|
||
output_mapping={"retriever.documents": "documents"},
|
||
name="document_retriever",
|
||
description="For any questions about Nikola Tesla, always use this tool",
|
||
)
|
||
|
||
## Create an Agent with the tool
|
||
agent = Agent(
|
||
chat_generator=OpenAIChatGenerator(model="gpt-4o-mini"),
|
||
tools=[retriever_tool]
|
||
)
|
||
|
||
## Let the Agent handle a query
|
||
result = agent.run([ChatMessage.from_user("Who was Nikola Tesla?")])
|
||
|
||
## Print result of the tool call
|
||
print("Tool Call Result:")
|
||
print(result["messages"][2].tool_call_result.result)
|
||
print("")
|
||
|
||
## Print answer
|
||
print("Answer:")
|
||
print(result["messages"][-1].text)
|
||
```
|