mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-23 17:00:41 +00:00
98 lines
5.2 KiB
Python
98 lines
5.2 KiB
Python
from haystack.database.elasticsearch import ElasticsearchDocumentStore
|
|
from haystack.indexing.utils import fetch_archive_from_http
|
|
from haystack.retriever.elasticsearch import ElasticsearchRetriever
|
|
from haystack.reader.farm import FARMReader
|
|
from haystack.finder import Finder
|
|
from farm.utils import initialize_device_settings
|
|
|
|
import logging
|
|
import subprocess
|
|
import time
|
|
|
|
LAUNCH_ELASTICSEARCH = False
|
|
device, n_gpu = initialize_device_settings(use_cuda=True)
|
|
|
|
# Start an Elasticsearch server
|
|
# You can start Elasticsearch on your local machine instance using Docker. If Docker is not readily available in
|
|
# your environment (eg., in Colab notebooks), then you can manually download and execute Elasticsearch from source.
|
|
if LAUNCH_ELASTICSEARCH:
|
|
logging.info("Starting Elasticsearch ...")
|
|
status = subprocess.run(
|
|
['docker run -d -p 9200:9200 -e "discovery.type=single-node" elasticsearch:7.6.2'], shell=True
|
|
)
|
|
if status.returncode:
|
|
raise Exception("Failed to launch Elasticsearch. If you want to connect to an existing Elasticsearch instance"
|
|
"then set LAUNCH_ELASTICSEARCH in the script to False.")
|
|
time.sleep(30)
|
|
|
|
# Download evaluation data, which is a subset of Natural Questions development set containing 50 documents
|
|
doc_dir = "../data/nq"
|
|
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/nq_dev_subset.json.zip"
|
|
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
|
|
|
|
# Connect to Elasticsearch
|
|
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document", create_index=False)
|
|
# Add evaluation data to Elasticsearch database
|
|
document_store.add_eval_data("../data/nq/nq_dev_subset.json")
|
|
|
|
# Initialize Retriever
|
|
retriever = ElasticsearchRetriever(document_store=document_store)
|
|
|
|
# Initialize Reader
|
|
reader = FARMReader("deepset/roberta-base-squad2")
|
|
|
|
# Initialize Finder which sticks together Reader and Retriever
|
|
finder = Finder(reader, retriever)
|
|
|
|
# Evaluate Retriever on its own
|
|
retriever_eval_results = retriever.eval()
|
|
## Retriever Recall is the proportion of questions for which the correct document containing the answer is
|
|
## among the correct documents
|
|
print("Retriever Recall:", retriever_eval_results["recall"])
|
|
## Retriever Mean Avg Precision rewards retrievers that give relevant documents a higher rank
|
|
print("Retriever Mean Avg Precision:", retriever_eval_results["mean avg precision"])
|
|
|
|
# Evaluate Reader on its own
|
|
reader_eval_results = reader.eval(document_store=document_store, device=device)
|
|
# Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch
|
|
#reader_eval_results = reader.eval_on_file("../data/natural_questions", "dev_subset.json", device=device)
|
|
|
|
## Reader Top-N-Recall is the proportion of predicted answers that overlap with their corresponding correct answer
|
|
print("Reader Top-N-Recall:", reader_eval_results["top_n_recall"])
|
|
## Reader Exact Match is the proportion of questions where the predicted answer is exactly the same as the correct answer
|
|
print("Reader Exact Match:", reader_eval_results["EM"])
|
|
## Reader F1-Score is the average overlap between the predicted answers and the correct answers
|
|
print("Reader F1-Score:", reader_eval_results["f1"])
|
|
|
|
|
|
# Evaluate combination of Reader and Retriever through Finder
|
|
finder_eval_results = finder.eval()
|
|
|
|
print("\n___Retriever Metrics in Finder___")
|
|
print("Retriever Recall:", finder_eval_results["retriever_recall"])
|
|
print("Retriever Mean Avg Precision:", finder_eval_results["retriever_map"])
|
|
|
|
# Reader is only evaluated with those questions, where the correct document is among the retrieved ones
|
|
print("\n___Reader Metrics in Finder___")
|
|
print("Reader Top-1 accuracy:", finder_eval_results["reader_top1_accuracy"])
|
|
print("Reader Top-1 accuracy (has answer):", finder_eval_results["reader_top1_accuracy_has_answer"])
|
|
print("Reader Top-k accuracy:", finder_eval_results["reader_top_k_accuracy"])
|
|
print("Reader Top-k accuracy (has answer):", finder_eval_results["reader_topk_accuracy_has_answer"])
|
|
print("Reader Top-1 EM:", finder_eval_results["reader_top1_em"])
|
|
print("Reader Top-1 EM (has answer):", finder_eval_results["reader_top1_em_has_answer"])
|
|
print("Reader Top-k EM:", finder_eval_results["reader_topk_em"])
|
|
print("Reader Top-k EM (has answer):", finder_eval_results["reader_topk_em_has_answer"])
|
|
print("Reader Top-1 F1:", finder_eval_results["reader_top1_f1"])
|
|
print("Reader Top-1 F1 (has answer):", finder_eval_results["reader_top1_f1_has_answer"])
|
|
print("Reader Top-k F1:", finder_eval_results["reader_topk_f1"])
|
|
print("Reader Top-k F1 (has answer):", finder_eval_results["reader_topk_f1_has_answer"])
|
|
print("Reader Top-1 no-answer accuracy:", finder_eval_results["reader_top1_no_answer_accuracy"])
|
|
print("Reader Top-k no-answer accuracy:", finder_eval_results["reader_topk_no_answer_accuracy"])
|
|
|
|
# Time measurements
|
|
print("\n___Time Measurements___")
|
|
print("Total retrieve time:", finder_eval_results["total_retrieve_time"])
|
|
print("Avg retrieve time per question:", finder_eval_results["avg_retrieve_time"])
|
|
print("Total reader timer:", finder_eval_results["total_reader_time"])
|
|
print("Avg read time per question:", finder_eval_results["avg_reader_time"])
|
|
print("Total Finder time:", finder_eval_results["total_finder_time"]) |