haystack/test/components/extractors/test_llm_metadata_extractor.py
Seth Peters f025501792
fix: LLMMetadataExtractor bug in handling Document objects with no content
* test(extractors): Add unit test for LLMMetadataExtractor with no content

Adds a new unit test `test_run_with_document_content_none` to `TestLLMMetadataExtractor`.

This test verifies that `LLMMetadataExtractor` correctly handles documents where `document.content` is None or an empty string.

It ensures that:

- Such documents are added to the `failed_documents` list.

- The correct error message ("Document has no content, skipping LLM call.") is present in their metadata.

- No actual LLM call is attempted for these documents.

This test provides coverage for the fix that prevents an AttributeError when processing documents with no content.

* chore: update comment to reflect new behavior in _run_on_thread method

* docs: Add release note for LLMMetadataExtractor no content fix

* Update releasenotes/notes/fix-llm-metadata-extractor-no-content-910067ea72094f18.yaml

* Update fix-llm-metadata-extractor-no-content-910067ea72094f18.yaml

---------

Co-authored-by: David S. Batista <dsbatista@gmail.com>
2025-05-23 18:57:39 +02:00

322 lines
14 KiB
Python

import os
import pytest
from unittest.mock import Mock
from haystack import Document, Pipeline
from haystack.components.builders import PromptBuilder
from haystack.components.writers import DocumentWriter
from haystack.dataclasses import ChatMessage
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.extractors import LLMMetadataExtractor
from haystack.components.generators.chat import OpenAIChatGenerator
class TestLLMMetadataExtractor:
def test_init(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
chat_generator = OpenAIChatGenerator(model="gpt-4o-mini", generation_kwargs={"temperature": 0.5})
extractor = LLMMetadataExtractor(
prompt="prompt {{document.content}}", expected_keys=["key1", "key2"], chat_generator=chat_generator
)
assert isinstance(extractor._chat_generator, OpenAIChatGenerator)
assert extractor._chat_generator.model == "gpt-4o-mini"
assert extractor._chat_generator.generation_kwargs == {"temperature": 0.5}
assert extractor.expected_keys == ["key1", "key2"]
def test_init_missing_prompt_variable(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
chat_generator = OpenAIChatGenerator(model="gpt-4o-mini")
with pytest.raises(ValueError):
_ = LLMMetadataExtractor(
prompt="prompt {{ wrong_variable }}", expected_keys=["key1", "key2"], chat_generator=chat_generator
)
def test_init_fails_without_chat_generator(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
with pytest.raises(TypeError):
_ = LLMMetadataExtractor(prompt="prompt {{document.content}}", expected_keys=["key1", "key2"])
def test_to_dict_openai(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
chat_generator = OpenAIChatGenerator(model="gpt-4o-mini", generation_kwargs={"temperature": 0.5})
extractor = LLMMetadataExtractor(
prompt="some prompt that was used with the LLM {{document.content}}",
expected_keys=["key1", "key2"],
chat_generator=chat_generator,
raise_on_failure=True,
)
extractor_dict = extractor.to_dict()
assert extractor_dict == {
"type": "haystack.components.extractors.llm_metadata_extractor.LLMMetadataExtractor",
"init_parameters": {
"prompt": "some prompt that was used with the LLM {{document.content}}",
"expected_keys": ["key1", "key2"],
"raise_on_failure": True,
"chat_generator": chat_generator.to_dict(),
"page_range": None,
"max_workers": 3,
},
}
def test_from_dict_openai(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
chat_generator = OpenAIChatGenerator(model="gpt-4o-mini", generation_kwargs={"temperature": 0.5})
extractor_dict = {
"type": "haystack.components.extractors.llm_metadata_extractor.LLMMetadataExtractor",
"init_parameters": {
"prompt": "some prompt that was used with the LLM {{document.content}}",
"expected_keys": ["key1", "key2"],
"chat_generator": chat_generator.to_dict(),
"raise_on_failure": True,
},
}
extractor = LLMMetadataExtractor.from_dict(extractor_dict)
assert extractor.raise_on_failure is True
assert extractor.expected_keys == ["key1", "key2"]
assert extractor.prompt == "some prompt that was used with the LLM {{document.content}}"
assert extractor._chat_generator.to_dict() == chat_generator.to_dict()
def test_warm_up_with_chat_generator(self, monkeypatch):
mock_chat_generator = Mock()
extractor = LLMMetadataExtractor(prompt="prompt {{document.content}}", chat_generator=mock_chat_generator)
mock_chat_generator.warm_up.assert_not_called()
extractor.warm_up()
mock_chat_generator.warm_up.assert_called_once()
def test_extract_metadata(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
extractor = LLMMetadataExtractor(prompt="prompt {{document.content}}", chat_generator=OpenAIChatGenerator())
result = extractor._extract_metadata(llm_answer='{"output": "valid json"}')
assert result == {"output": "valid json"}
def test_extract_metadata_invalid_json(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
extractor = LLMMetadataExtractor(
prompt="prompt {{document.content}}", chat_generator=OpenAIChatGenerator(), raise_on_failure=True
)
with pytest.raises(ValueError):
extractor._extract_metadata(llm_answer='{"output: "valid json"}')
def test_extract_metadata_missing_key(self, monkeypatch, caplog):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
extractor = LLMMetadataExtractor(
prompt="prompt {{document.content}}", chat_generator=OpenAIChatGenerator(), expected_keys=["key1"]
)
extractor._extract_metadata(llm_answer='{"output": "valid json"}')
assert "Expected response from LLM to be a JSON with keys" in caplog.text
def test_prepare_prompts(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
extractor = LLMMetadataExtractor(
prompt="some_user_definer_prompt {{document.content}}", chat_generator=OpenAIChatGenerator()
)
docs = [
Document(content="deepset was founded in 2018 in Berlin, and is known for its Haystack framework"),
Document(
content="Hugging Face is a company founded in Paris, France and is known for its Transformers library"
),
]
prompts = extractor._prepare_prompts(docs)
assert prompts == [
ChatMessage.from_dict(
{
"_role": "user",
"_meta": {},
"_name": None,
"_content": [
{
"text": "some_user_definer_prompt deepset was founded in 2018 in Berlin, and is known for its Haystack framework"
}
],
}
),
ChatMessage.from_dict(
{
"_role": "user",
"_meta": {},
"_name": None,
"_content": [
{
"text": "some_user_definer_prompt Hugging Face is a company founded in Paris, France and is known for its Transformers library"
}
],
}
),
]
def test_prepare_prompts_empty_document(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
extractor = LLMMetadataExtractor(
prompt="some_user_definer_prompt {{document.content}}", chat_generator=OpenAIChatGenerator()
)
docs = [
Document(content=""),
Document(
content="Hugging Face is a company founded in Paris, France and is known for its Transformers library"
),
]
prompts = extractor._prepare_prompts(docs)
assert prompts == [
None,
ChatMessage.from_dict(
{
"_role": "user",
"_meta": {},
"_name": None,
"_content": [
{
"text": "some_user_definer_prompt Hugging Face is a company founded in Paris, France and is known for its Transformers library"
}
],
}
),
]
def test_prepare_prompts_expanded_range(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
extractor = LLMMetadataExtractor(
prompt="some_user_definer_prompt {{document.content}}",
chat_generator=OpenAIChatGenerator(),
page_range=["1-2"],
)
docs = [
Document(
content="Hugging Face is a company founded in Paris, France and is known for its Transformers library\fPage 2\fPage 3"
)
]
prompts = extractor._prepare_prompts(docs, expanded_range=[1, 2])
assert prompts == [
ChatMessage.from_dict(
{
"_role": "user",
"_meta": {},
"_name": None,
"_content": [
{
"text": "some_user_definer_prompt Hugging Face is a company founded in Paris, France and is known for its Transformers library\x0cPage 2\x0c"
}
],
}
)
]
def test_run_no_documents(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
extractor = LLMMetadataExtractor(prompt="prompt {{document.content}}", chat_generator=OpenAIChatGenerator())
result = extractor.run(documents=[])
assert result["documents"] == []
assert result["failed_documents"] == []
def test_run_with_document_content_none(self, monkeypatch):
monkeypatch.setenv("OPENAI_API_KEY", "test-api-key")
# Mock the chat generator to prevent actual LLM calls
mock_chat_generator = Mock(spec=OpenAIChatGenerator)
extractor = LLMMetadataExtractor(
prompt="prompt {{document.content}}", chat_generator=mock_chat_generator, expected_keys=["some_key"]
)
# Document with None content
doc_with_none_content = Document(content=None)
# also test with empty string content
doc_with_empty_content = Document(content="")
docs = [doc_with_none_content, doc_with_empty_content]
result = extractor.run(documents=docs)
# Assert that the documents are in failed_documents
assert len(result["documents"]) == 0
assert len(result["failed_documents"]) == 2
failed_doc_none = result["failed_documents"][0]
assert failed_doc_none.id == doc_with_none_content.id
assert "metadata_extraction_error" in failed_doc_none.meta
assert failed_doc_none.meta["metadata_extraction_error"] == "Document has no content, skipping LLM call."
failed_doc_empty = result["failed_documents"][1]
assert failed_doc_empty.id == doc_with_empty_content.id
assert "metadata_extraction_error" in failed_doc_empty.meta
assert failed_doc_empty.meta["metadata_extraction_error"] == "Document has no content, skipping LLM call."
# Ensure no attempt was made to call the LLM
mock_chat_generator.run.assert_not_called()
@pytest.mark.integration
@pytest.mark.skipif(
not os.environ.get("OPENAI_API_KEY", None),
reason="Export an env var called OPENAI_API_KEY containing the OpenAI API key to run this test.",
)
def test_live_run(self):
docs = [
Document(content="deepset was founded in 2018 in Berlin, and is known for its Haystack framework"),
Document(
content="Hugging Face is a company founded in Paris, France and is known for its Transformers library"
),
]
ner_prompt = """-Goal-
Given text and a list of entity types, identify all entities of those types from the text.
-Steps-
1. Identify all entities. For each identified entity, extract the following information:
- entity_name: Name of the entity, capitalized
- entity_type: One of the following types: [organization, product, service, industry]
Format each entity as {"entity": <entity_name>, "entity_type": <entity_type>}
2. Return output in a single list with all the entities identified in steps 1.
-Examples-
######################
Example 1:
entity_types: [organization, person, partnership, financial metric, product, service, industry, investment strategy, market trend]
text: Another area of strength is our co-brand issuance. Visa is the primary network partner for eight of the top
10 co-brand partnerships in the US today and we are pleased that Visa has finalized a multi-year extension of
our successful credit co-branded partnership with Alaska Airlines, a portfolio that benefits from a loyal customer
base and high cross-border usage.
We have also had significant co-brand momentum in CEMEA. First, we launched a new co-brand card in partnership
with Qatar Airways, British Airways and the National Bank of Kuwait. Second, we expanded our strong global
Marriott relationship to launch Qatar's first hospitality co-branded card with Qatar Islamic Bank. Across the
United Arab Emirates, we now have exclusive agreements with all the leading airlines marked by a recent
agreement with Emirates Skywards.
And we also signed an inaugural Airline co-brand agreement in Morocco with Royal Air Maroc. Now newer digital
issuers are equally
------------------------
output:
{"entities": [{"entity": "Visa", "entity_type": "company"}, {"entity": "Alaska Airlines", "entity_type": "company"}, {"entity": "Qatar Airways", "entity_type": "company"}, {"entity": "British Airways", "entity_type": "company"}, {"entity": "National Bank of Kuwait", "entity_type": "company"}, {"entity": "Marriott", "entity_type": "company"}, {"entity": "Qatar Islamic Bank", "entity_type": "company"}, {"entity": "Emirates Skywards", "entity_type": "company"}, {"entity": "Royal Air Maroc", "entity_type": "company"}]}
#############################
-Real Data-
######################
entity_types: [company, organization, person, country, product, service]
text: {{ document.content }}
######################
output:
"""
doc_store = InMemoryDocumentStore()
extractor = LLMMetadataExtractor(
prompt=ner_prompt, expected_keys=["entities"], chat_generator=OpenAIChatGenerator()
)
writer = DocumentWriter(document_store=doc_store)
pipeline = Pipeline()
pipeline.add_component("extractor", extractor)
pipeline.add_component("doc_writer", writer)
pipeline.connect("extractor.documents", "doc_writer.documents")
pipeline.run(data={"documents": docs})
doc_store_docs = doc_store.filter_documents()
assert len(doc_store_docs) == 2
assert "entities" in doc_store_docs[0].meta
assert "entities" in doc_store_docs[1].meta