mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-09-28 17:45:32 +00:00
143 lines
4.9 KiB
Python
143 lines
4.9 KiB
Python
"""Utils for using OpenAI API"""
|
|
import os
|
|
import logging
|
|
import platform
|
|
import sys
|
|
import json
|
|
from typing import Dict, Union, Tuple, Optional
|
|
import requests
|
|
|
|
from transformers import GPT2TokenizerFast
|
|
|
|
from haystack.errors import OpenAIError, OpenAIRateLimitError
|
|
from haystack.utils.reflection import retry_with_exponential_backoff
|
|
from haystack.environment import (
|
|
HAYSTACK_REMOTE_API_BACKOFF_SEC,
|
|
HAYSTACK_REMOTE_API_MAX_RETRIES,
|
|
HAYSTACK_REMOTE_API_TIMEOUT_SEC,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
machine = platform.machine().lower()
|
|
system = platform.system()
|
|
|
|
|
|
OPENAI_TIMEOUT = float(os.environ.get(HAYSTACK_REMOTE_API_TIMEOUT_SEC, 30))
|
|
OPENAI_BACKOFF = float(os.environ.get(HAYSTACK_REMOTE_API_BACKOFF_SEC, 10))
|
|
OPENAI_MAX_RETRIES = int(os.environ.get(HAYSTACK_REMOTE_API_MAX_RETRIES, 5))
|
|
|
|
|
|
USE_TIKTOKEN = False
|
|
if sys.version_info >= (3, 8) and (machine in ["amd64", "x86_64"] or (machine == "arm64" and system == "Darwin")):
|
|
USE_TIKTOKEN = True
|
|
|
|
if USE_TIKTOKEN:
|
|
import tiktoken # pylint: disable=import-error
|
|
from tiktoken.model import MODEL_TO_ENCODING
|
|
else:
|
|
logger.warning(
|
|
"OpenAI tiktoken module is not available for Python < 3.8,Linux ARM64 and AARCH64. Falling back to GPT2TokenizerFast."
|
|
)
|
|
|
|
|
|
def load_openai_tokenizer(tokenizer_name: str):
|
|
"""Load either the tokenizer from tiktoken (if the library is available) or fallback to the GPT2TokenizerFast
|
|
from the transformers library.
|
|
|
|
:param tokenizer_name: The name of the tokenizer to load.
|
|
"""
|
|
if USE_TIKTOKEN:
|
|
logger.debug("Using tiktoken %s tokenizer", tokenizer_name)
|
|
tokenizer = tiktoken.get_encoding(tokenizer_name)
|
|
else:
|
|
logger.debug("Using GPT2TokenizerFast tokenizer")
|
|
tokenizer = GPT2TokenizerFast.from_pretrained(tokenizer_name)
|
|
return tokenizer
|
|
|
|
|
|
def count_openai_tokens(text: str, tokenizer) -> int:
|
|
"""Count the number of tokens in `text` based on the provided OpenAI `tokenizer`.
|
|
|
|
:param text: A string to be tokenized.
|
|
:param tokenizer: An OpenAI tokenizer.
|
|
"""
|
|
if USE_TIKTOKEN:
|
|
return len(tokenizer.encode(text))
|
|
else:
|
|
return len(tokenizer.tokenize(text))
|
|
|
|
|
|
def _openai_text_completion_tokenization_details(model_name: str):
|
|
"""Return the tokenizer name and max tokens limit for a given OpenAI `model_name`.
|
|
|
|
:param model_name: Name of the OpenAI model.
|
|
"""
|
|
tokenizer_name = "gpt2"
|
|
if "davinci" in model_name:
|
|
max_tokens_limit = 4000
|
|
if USE_TIKTOKEN:
|
|
tokenizer_name = MODEL_TO_ENCODING.get(model_name, "p50k_base")
|
|
else:
|
|
max_tokens_limit = 2048
|
|
return tokenizer_name, max_tokens_limit
|
|
|
|
|
|
@retry_with_exponential_backoff(
|
|
backoff_in_seconds=OPENAI_BACKOFF, max_retries=OPENAI_MAX_RETRIES, errors=(OpenAIRateLimitError, OpenAIError)
|
|
)
|
|
def openai_request(
|
|
url: str,
|
|
headers: Dict,
|
|
payload: Dict,
|
|
timeout: Union[float, Tuple[float, float]] = OPENAI_TIMEOUT,
|
|
read_response: Optional[bool] = True,
|
|
**kwargs,
|
|
):
|
|
"""Make a request to the OpenAI API given a `url`, `headers`, `payload`, and `timeout`.
|
|
|
|
:param url: The URL of the OpenAI API.
|
|
:param headers: Dictionary of HTTP Headers to send with the :class:`Request`.
|
|
:param payload: The payload to send with the request.
|
|
:param timeout: The timeout length of the request. The default is 30s.
|
|
:param read_response: Whether to read the response as JSON. The default is True.
|
|
"""
|
|
response = requests.request("POST", url, headers=headers, data=json.dumps(payload), timeout=timeout, **kwargs)
|
|
if read_response:
|
|
json_response = json.loads(response.text)
|
|
|
|
if response.status_code != 200:
|
|
openai_error: OpenAIError
|
|
if response.status_code == 429:
|
|
openai_error = OpenAIRateLimitError(f"API rate limit exceeded: {response.text}")
|
|
else:
|
|
openai_error = OpenAIError(
|
|
f"OpenAI returned an error.\n"
|
|
f"Status code: {response.status_code}\n"
|
|
f"Response body: {response.text}",
|
|
status_code=response.status_code,
|
|
)
|
|
raise openai_error
|
|
if read_response:
|
|
return json_response
|
|
else:
|
|
return response
|
|
|
|
|
|
def _check_openai_text_completion_answers(result: Dict, payload: Dict) -> None:
|
|
"""Check the `finish_reason` the answers returned by OpenAI completions endpoint. If the `finish_reason` is `length`,
|
|
log a warning to the user.
|
|
|
|
:param result: The result returned from the OpenAI API.
|
|
:param payload: The payload sent to the OpenAI API.
|
|
"""
|
|
number_of_truncated_completions = sum(1 for ans in result["choices"] if ans["finish_reason"] == "length")
|
|
if number_of_truncated_completions > 0:
|
|
logger.warning(
|
|
"%s out of the %s completions have been truncated before reaching a natural stopping point. "
|
|
"Increase the max_tokens parameter to allow for longer completions.",
|
|
number_of_truncated_completions,
|
|
payload["n"],
|
|
)
|