haystack/test/components/audio/test_whisper_local.py
2024-02-16 13:01:57 +01:00

180 lines
7.4 KiB
Python

import sys
from pathlib import Path
from unittest.mock import patch, MagicMock
import pytest
import torch
from haystack.dataclasses import Document, ByteStream
from haystack.components.audio import LocalWhisperTranscriber
from haystack.utils.device import ComponentDevice, Device
SAMPLES_PATH = Path(__file__).parent.parent.parent / "test_files"
class TestLocalWhisperTranscriber:
def test_init(self):
transcriber = LocalWhisperTranscriber(
model="large-v2"
) # Doesn't matter if it's huge, the model is not loaded in init.
assert transcriber.model == "large-v2"
assert transcriber.device == ComponentDevice.resolve_device(None)
assert transcriber._model is None
def test_init_wrong_model(self):
with pytest.raises(ValueError, match="Model name 'whisper-1' not recognized"):
LocalWhisperTranscriber(model="whisper-1")
def test_to_dict(self):
transcriber = LocalWhisperTranscriber()
data = transcriber.to_dict()
assert data == {
"type": "haystack.components.audio.whisper_local.LocalWhisperTranscriber",
"init_parameters": {
"model": "large",
"device": ComponentDevice.resolve_device(None).to_dict(),
"whisper_params": {},
},
}
def test_to_dict_with_custom_init_parameters(self):
transcriber = LocalWhisperTranscriber(
model="tiny",
device=ComponentDevice.from_str("cuda:0"),
whisper_params={"return_segments": True, "temperature": [0.1, 0.6, 0.8]},
)
data = transcriber.to_dict()
assert data == {
"type": "haystack.components.audio.whisper_local.LocalWhisperTranscriber",
"init_parameters": {
"model": "tiny",
"device": ComponentDevice.from_str("cuda:0").to_dict(),
"whisper_params": {"return_segments": True, "temperature": [0.1, 0.6, 0.8]},
},
}
def test_from_dict(self):
data = {
"type": "haystack.components.audio.whisper_local.LocalWhisperTranscriber",
"init_parameters": {
"model": "tiny",
"device": ComponentDevice.from_single(Device.cpu()).to_dict(),
"whisper_params": {},
},
}
transcriber = LocalWhisperTranscriber.from_dict(data)
assert transcriber.model == "tiny"
assert transcriber.device == ComponentDevice.from_single(Device.cpu())
assert transcriber.whisper_params == {}
assert transcriber._model is None
def test_warmup(self):
with patch("haystack.components.audio.whisper_local.whisper") as mocked_whisper:
transcriber = LocalWhisperTranscriber(model="large-v2", device=ComponentDevice.from_str("cpu"))
mocked_whisper.load_model.assert_not_called()
transcriber.warm_up()
mocked_whisper.load_model.assert_called_once_with("large-v2", device=torch.device(type="cpu"))
def test_warmup_doesnt_reload(self):
with patch("haystack.components.audio.whisper_local.whisper") as mocked_whisper:
transcriber = LocalWhisperTranscriber(model="large-v2")
transcriber.warm_up()
transcriber.warm_up()
mocked_whisper.load_model.assert_called_once()
def test_run_with_path(self):
comp = LocalWhisperTranscriber(model="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.run(sources=[SAMPLES_PATH / "audio" / "this is the content of the document.wav"])
expected = Document(
content="test transcription",
meta={
"audio_file": SAMPLES_PATH / "audio" / "this is the content of the document.wav",
"other_metadata": ["other", "meta", "data"],
},
)
assert results["documents"] == [expected]
def test_run_with_str(self):
comp = LocalWhisperTranscriber(model="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.run(
sources=[str((SAMPLES_PATH / "audio" / "this is the content of the document.wav").absolute())]
)
expected = Document(
content="test transcription",
meta={
"audio_file": (SAMPLES_PATH / "audio" / "this is the content of the document.wav").absolute(),
"other_metadata": ["other", "meta", "data"],
},
)
assert results["documents"] == [expected]
def test_transcribe(self):
comp = LocalWhisperTranscriber(model="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
results = comp.transcribe(sources=[SAMPLES_PATH / "audio" / "this is the content of the document.wav"])
expected = Document(
content="test transcription",
meta={
"audio_file": SAMPLES_PATH / "audio" / "this is the content of the document.wav",
"other_metadata": ["other", "meta", "data"],
},
)
assert results == [expected]
def test_transcribe_stream(self):
comp = LocalWhisperTranscriber(model="large-v2")
comp._model = MagicMock()
comp._model.transcribe.return_value = {
"text": "test transcription",
"other_metadata": ["other", "meta", "data"],
}
path = SAMPLES_PATH / "audio" / "this is the content of the document.wav"
bs = ByteStream.from_file_path(path)
bs.meta["file_path"] = path
results = comp.transcribe(sources=[bs])
expected = Document(
content="test transcription", meta={"audio_file": path, "other_metadata": ["other", "meta", "data"]}
)
assert results == [expected]
@pytest.mark.integration
@pytest.mark.skipif(sys.platform in ["win32", "cygwin"], reason="ffmpeg not installed on Windows CI")
def test_whisper_local_transcriber(self, test_files_path):
comp = LocalWhisperTranscriber(model="medium", whisper_params={"language": "english"})
comp.warm_up()
output = comp.run(
sources=[
test_files_path / "audio" / "this is the content of the document.wav",
str((test_files_path / "audio" / "the context for this answer is here.wav").absolute()),
ByteStream.from_file_path(test_files_path / "audio" / "answer.wav", "rb"),
]
)
docs = output["documents"]
assert len(docs) == 3
assert docs[0].content.strip().lower() == "this is the content of the document."
assert test_files_path / "audio" / "this is the content of the document.wav" == docs[0].meta["audio_file"]
assert docs[1].content.strip().lower() == "the context for this answer is here."
path = test_files_path / "audio" / "the context for this answer is here.wav"
assert path.absolute() == docs[1].meta["audio_file"]
assert docs[2].content.strip().lower() == "answer."
# meta.audio_file should contain the temp path where we dumped the audio bytes
assert docs[2].meta["audio_file"]