mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-15 13:00:53 +00:00

* feat!: Use `Secret` for passing authentication secrets to components * Add comment to clarify type ignore
126 lines
4.9 KiB
Python
126 lines
4.9 KiB
Python
from unittest.mock import MagicMock, patch
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from huggingface_hub.utils import RepositoryNotFoundError
|
|
from haystack.utils.auth import Secret
|
|
|
|
from haystack.components.embedders.hugging_face_tei_text_embedder import HuggingFaceTEITextEmbedder
|
|
|
|
|
|
@pytest.fixture
|
|
def mock_check_valid_model():
|
|
with patch(
|
|
"haystack.components.embedders.hugging_face_tei_text_embedder.check_valid_model", MagicMock(return_value=None)
|
|
) as mock:
|
|
yield mock
|
|
|
|
|
|
def mock_embedding_generation(text, **kwargs):
|
|
response = np.random.rand(384)
|
|
return response
|
|
|
|
|
|
class TestHuggingFaceTEITextEmbedder:
|
|
def test_init_default(self, monkeypatch, mock_check_valid_model):
|
|
monkeypatch.setenv("HF_API_TOKEN", "fake-api-token")
|
|
embedder = HuggingFaceTEITextEmbedder()
|
|
|
|
assert embedder.model == "BAAI/bge-small-en-v1.5"
|
|
assert embedder.url is None
|
|
assert embedder.token == Secret.from_env_var("HF_API_TOKEN", strict=False)
|
|
assert embedder.prefix == ""
|
|
assert embedder.suffix == ""
|
|
|
|
def test_init_with_parameters(self, mock_check_valid_model):
|
|
embedder = HuggingFaceTEITextEmbedder(
|
|
model="sentence-transformers/all-mpnet-base-v2",
|
|
url="https://some_embedding_model.com",
|
|
token=Secret.from_token("fake-api-token"),
|
|
prefix="prefix",
|
|
suffix="suffix",
|
|
)
|
|
|
|
assert embedder.model == "sentence-transformers/all-mpnet-base-v2"
|
|
assert embedder.url == "https://some_embedding_model.com"
|
|
assert embedder.token == Secret.from_token("fake-api-token")
|
|
assert embedder.prefix == "prefix"
|
|
assert embedder.suffix == "suffix"
|
|
|
|
def test_initialize_with_invalid_url(self, mock_check_valid_model):
|
|
with pytest.raises(ValueError):
|
|
HuggingFaceTEITextEmbedder(model="sentence-transformers/all-mpnet-base-v2", url="invalid_url")
|
|
|
|
def test_initialize_with_url_but_invalid_model(self, mock_check_valid_model):
|
|
# When custom TEI endpoint is used via URL, model must be provided and valid HuggingFace Hub model id
|
|
mock_check_valid_model.side_effect = RepositoryNotFoundError("Invalid model id")
|
|
with pytest.raises(RepositoryNotFoundError):
|
|
HuggingFaceTEITextEmbedder(model="invalid_model_id", url="https://some_embedding_model.com")
|
|
|
|
def test_to_dict(self, mock_check_valid_model):
|
|
component = HuggingFaceTEITextEmbedder()
|
|
data = component.to_dict()
|
|
|
|
assert data == {
|
|
"type": "haystack.components.embedders.hugging_face_tei_text_embedder.HuggingFaceTEITextEmbedder",
|
|
"init_parameters": {
|
|
"token": {"env_vars": ["HF_API_TOKEN"], "strict": False, "type": "env_var"},
|
|
"model": "BAAI/bge-small-en-v1.5",
|
|
"url": None,
|
|
"prefix": "",
|
|
"suffix": "",
|
|
},
|
|
}
|
|
|
|
def test_to_dict_with_custom_init_parameters(self, mock_check_valid_model):
|
|
component = HuggingFaceTEITextEmbedder(
|
|
model="sentence-transformers/all-mpnet-base-v2",
|
|
url="https://some_embedding_model.com",
|
|
token=Secret.from_env_var("ENV_VAR", strict=False),
|
|
prefix="prefix",
|
|
suffix="suffix",
|
|
)
|
|
|
|
data = component.to_dict()
|
|
|
|
assert data == {
|
|
"type": "haystack.components.embedders.hugging_face_tei_text_embedder.HuggingFaceTEITextEmbedder",
|
|
"init_parameters": {
|
|
"token": {"env_vars": ["ENV_VAR"], "strict": False, "type": "env_var"},
|
|
"model": "sentence-transformers/all-mpnet-base-v2",
|
|
"url": "https://some_embedding_model.com",
|
|
"prefix": "prefix",
|
|
"suffix": "suffix",
|
|
},
|
|
}
|
|
|
|
def test_run(self, mock_check_valid_model):
|
|
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
|
|
mock_embedding_patch.side_effect = mock_embedding_generation
|
|
|
|
embedder = HuggingFaceTEITextEmbedder(
|
|
model="BAAI/bge-small-en-v1.5",
|
|
token=Secret.from_token("fake-api-token"),
|
|
prefix="prefix ",
|
|
suffix=" suffix",
|
|
)
|
|
|
|
result = embedder.run(text="The food was delicious")
|
|
|
|
mock_embedding_patch.assert_called_once_with(text="prefix The food was delicious suffix")
|
|
|
|
assert len(result["embedding"]) == 384
|
|
assert all(isinstance(x, float) for x in result["embedding"])
|
|
|
|
def test_run_wrong_input_format(self, mock_check_valid_model):
|
|
embedder = HuggingFaceTEITextEmbedder(
|
|
model="BAAI/bge-small-en-v1.5",
|
|
url="https://some_embedding_model.com",
|
|
token=Secret.from_token("fake-api-token"),
|
|
)
|
|
|
|
list_integers_input = [1, 2, 3]
|
|
|
|
with pytest.raises(TypeError, match="HuggingFaceTEITextEmbedder expects a string as an input"):
|
|
embedder.run(text=list_integers_input)
|