haystack/test/components/embedders/test_hugging_face_tei_text_embedder.py
Madeesh Kannan 27d1af3068
feat!: Use Secret for passing authentication secrets to components (#6887)
* feat!: Use `Secret` for passing authentication secrets to components

* Add comment to clarify type ignore
2024-02-05 13:17:01 +01:00

126 lines
4.9 KiB
Python

from unittest.mock import MagicMock, patch
import numpy as np
import pytest
from huggingface_hub.utils import RepositoryNotFoundError
from haystack.utils.auth import Secret
from haystack.components.embedders.hugging_face_tei_text_embedder import HuggingFaceTEITextEmbedder
@pytest.fixture
def mock_check_valid_model():
with patch(
"haystack.components.embedders.hugging_face_tei_text_embedder.check_valid_model", MagicMock(return_value=None)
) as mock:
yield mock
def mock_embedding_generation(text, **kwargs):
response = np.random.rand(384)
return response
class TestHuggingFaceTEITextEmbedder:
def test_init_default(self, monkeypatch, mock_check_valid_model):
monkeypatch.setenv("HF_API_TOKEN", "fake-api-token")
embedder = HuggingFaceTEITextEmbedder()
assert embedder.model == "BAAI/bge-small-en-v1.5"
assert embedder.url is None
assert embedder.token == Secret.from_env_var("HF_API_TOKEN", strict=False)
assert embedder.prefix == ""
assert embedder.suffix == ""
def test_init_with_parameters(self, mock_check_valid_model):
embedder = HuggingFaceTEITextEmbedder(
model="sentence-transformers/all-mpnet-base-v2",
url="https://some_embedding_model.com",
token=Secret.from_token("fake-api-token"),
prefix="prefix",
suffix="suffix",
)
assert embedder.model == "sentence-transformers/all-mpnet-base-v2"
assert embedder.url == "https://some_embedding_model.com"
assert embedder.token == Secret.from_token("fake-api-token")
assert embedder.prefix == "prefix"
assert embedder.suffix == "suffix"
def test_initialize_with_invalid_url(self, mock_check_valid_model):
with pytest.raises(ValueError):
HuggingFaceTEITextEmbedder(model="sentence-transformers/all-mpnet-base-v2", url="invalid_url")
def test_initialize_with_url_but_invalid_model(self, mock_check_valid_model):
# When custom TEI endpoint is used via URL, model must be provided and valid HuggingFace Hub model id
mock_check_valid_model.side_effect = RepositoryNotFoundError("Invalid model id")
with pytest.raises(RepositoryNotFoundError):
HuggingFaceTEITextEmbedder(model="invalid_model_id", url="https://some_embedding_model.com")
def test_to_dict(self, mock_check_valid_model):
component = HuggingFaceTEITextEmbedder()
data = component.to_dict()
assert data == {
"type": "haystack.components.embedders.hugging_face_tei_text_embedder.HuggingFaceTEITextEmbedder",
"init_parameters": {
"token": {"env_vars": ["HF_API_TOKEN"], "strict": False, "type": "env_var"},
"model": "BAAI/bge-small-en-v1.5",
"url": None,
"prefix": "",
"suffix": "",
},
}
def test_to_dict_with_custom_init_parameters(self, mock_check_valid_model):
component = HuggingFaceTEITextEmbedder(
model="sentence-transformers/all-mpnet-base-v2",
url="https://some_embedding_model.com",
token=Secret.from_env_var("ENV_VAR", strict=False),
prefix="prefix",
suffix="suffix",
)
data = component.to_dict()
assert data == {
"type": "haystack.components.embedders.hugging_face_tei_text_embedder.HuggingFaceTEITextEmbedder",
"init_parameters": {
"token": {"env_vars": ["ENV_VAR"], "strict": False, "type": "env_var"},
"model": "sentence-transformers/all-mpnet-base-v2",
"url": "https://some_embedding_model.com",
"prefix": "prefix",
"suffix": "suffix",
},
}
def test_run(self, mock_check_valid_model):
with patch("huggingface_hub.InferenceClient.feature_extraction") as mock_embedding_patch:
mock_embedding_patch.side_effect = mock_embedding_generation
embedder = HuggingFaceTEITextEmbedder(
model="BAAI/bge-small-en-v1.5",
token=Secret.from_token("fake-api-token"),
prefix="prefix ",
suffix=" suffix",
)
result = embedder.run(text="The food was delicious")
mock_embedding_patch.assert_called_once_with(text="prefix The food was delicious suffix")
assert len(result["embedding"]) == 384
assert all(isinstance(x, float) for x in result["embedding"])
def test_run_wrong_input_format(self, mock_check_valid_model):
embedder = HuggingFaceTEITextEmbedder(
model="BAAI/bge-small-en-v1.5",
url="https://some_embedding_model.com",
token=Secret.from_token("fake-api-token"),
)
list_integers_input = [1, 2, 3]
with pytest.raises(TypeError, match="HuggingFaceTEITextEmbedder expects a string as an input"):
embedder.run(text=list_integers_input)