mirror of
https://github.com/deepset-ai/haystack.git
synced 2025-07-23 08:52:16 +00:00

* first draft / notes on new primitives * wip label / feedback refactor * rename doc.text -> doc.content. add doc.content_type * add datatype for content * remove faq_question_field from ES and weaviate. rename text_field -> content_field in docstores. update tutorials for content field * update converters for . Add warning for empty * renam label.question -> label.query. Allow sorting of Answers. * WIP primitives * update ui/reader for new Answer format * Improve Label. First refactoring of MultiLabel. Adjust eval code * fixed workflow conflict with introducing new one (#1472) * Add latest docstring and tutorial changes * make add_eval_data() work again * fix reader formats. WIP fix _extract_docs_and_labels_from_dict * fix test reader * Add latest docstring and tutorial changes * fix another test case for reader * fix mypy in farm reader.eval() * fix mypy in farm reader.eval() * WIP ORM refactor * Add latest docstring and tutorial changes * fix mypy weaviate * make label and multilabel dataclasses * bump mypy env in CI to python 3.8 * WIP refactor Label ORM * WIP refactor Label ORM * simplify tests for individual doc stores * WIP refactoring markers of tests * test alternative approach for tests with existing parametrization * WIP refactor ORMs * fix skip logic of already parametrized tests * fix weaviate behaviour in tests - not parametrizing it in our general test cases. * Add latest docstring and tutorial changes * fix some tests * remove sql from document_store_types * fix markers for generator and pipeline test * remove inmemory marker * remove unneeded elasticsearch markers * add dataclasses-json dependency. adjust ORM to just store JSON repr * ignore type as dataclasses_json seems to miss functionality here * update readme and contributing.md * update contributing * adjust example * fix duplicate doc handling for custom index * Add latest docstring and tutorial changes * fix some ORM issues. fix get_all_labels_aggregated. * update drop flags where get_all_labels_aggregated() was used before * Add latest docstring and tutorial changes * add to_json(). add + fix tests * fix no_answer handling in label / multilabel * fix duplicate docs in memory doc store. change primary key for sql doc table * fix mypy issues * fix mypy issues * haystack/retriever/base.py * fix test_write_document_meta[elastic] * fix test_elasticsearch_custom_fields * fix test_labels[elastic] * fix crawler * fix converter * fix docx converter * fix preprocessor * fix test_utils * fix tfidf retriever. fix selection of docstore in tests with multiple fixtures / parameterizations * Add latest docstring and tutorial changes * fix crawler test. fix ocrconverter attribute * fix test_elasticsearch_custom_query * fix generator pipeline * fix ocr converter * fix ragenerator * Add latest docstring and tutorial changes * fix test_load_and_save_yaml for elasticsearch * fixes for pipeline tests * fix faq pipeline * fix pipeline tests * Add latest docstring and tutorial changes * fix weaviate * Add latest docstring and tutorial changes * trigger CI * satisfy mypy * Add latest docstring and tutorial changes * satisfy mypy * Add latest docstring and tutorial changes * trigger CI * fix question generation test * fix ray. fix Q-generation * fix translator test * satisfy mypy * wip refactor feedback rest api * fix rest api feedback endpoint * fix doc classifier * remove relation of Labels -> Docs in SQL ORM * fix faiss/milvus tests * fix doc classifier test * fix eval test * fixing eval issues * Add latest docstring and tutorial changes * fix mypy * WIP replace dataclasses-json with manual serialization * Add latest docstring and tutorial changes * revert to dataclass-json serialization for now. remove debug prints. * update docstrings * fix extractor. fix Answer Span init * fix api test * keep meta data of answers in reader.run() * fix meta handling * adress review feedback * Add latest docstring and tutorial changes * make document=None for open domain labels * add import * fix print utils * fix rest api * adress review feedback * Add latest docstring and tutorial changes * fix mypy Co-authored-by: Markus Paff <markuspaff.mp@gmail.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2082 lines
62 KiB
Plaintext
2082 lines
62 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"colab_type": "text",
|
||
"collapsed": true,
|
||
"id": "MGSXn0USOhtu",
|
||
"pycharm": {
|
||
"name": "#%% md\n"
|
||
}
|
||
},
|
||
"source": [
|
||
"# Evaluation of a QA System\n",
|
||
"\n",
|
||
"[](https://colab.research.google.com/github/deepset-ai/haystack/blob/master/tutorials/Tutorial5_Evaluation.ipynb)\n",
|
||
"\n",
|
||
"To be able to make a statement about the performance of a question-answering system, it is important to evalute it. Furthermore, evaluation allows to determine which parts of the system can be improved."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"source": [
|
||
"### Prepare environment\n",
|
||
"\n",
|
||
"#### Colab: Enable the GPU runtime\n",
|
||
"Make sure you enable the GPU runtime to experience decent speed in this tutorial.\n",
|
||
"**Runtime -> Change Runtime type -> Hardware accelerator -> GPU**\n",
|
||
"\n",
|
||
"<img src=\"https://raw.githubusercontent.com/deepset-ai/haystack/master/docs/_src/img/colab_gpu_runtime.jpg\">"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"outputs": [],
|
||
"source": [
|
||
"# Make sure you have a GPU running\n",
|
||
"!nvidia-smi"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false,
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"colab_type": "text",
|
||
"id": "E6H_7lAmOht8"
|
||
},
|
||
"source": [
|
||
"## Start an Elasticsearch server\n",
|
||
"You can start Elasticsearch on your local machine instance using Docker. If Docker is not readily available in your environment (eg., in Colab notebooks), then you can manually download and execute Elasticsearch from source."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {},
|
||
"colab_type": "code",
|
||
"id": "vgmFOp82Oht_",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Install the latest release of Haystack in your own environment \n",
|
||
"#! pip install farm-haystack\n",
|
||
"\n",
|
||
"# Install the latest master of Haystack\n",
|
||
"!pip install grpcio-tools==1.34.1\n",
|
||
"!pip install git+https://github.com/deepset-ai/haystack.git\n",
|
||
"\n",
|
||
"# If you run this notebook on Google Colab, you might need to\n",
|
||
"# restart the runtime after installing haystack."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {},
|
||
"colab_type": "code",
|
||
"id": "tNoaWcDKOhuL",
|
||
"pycharm": {
|
||
"is_executing": true,
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# In Colab / No Docker environments: Start Elasticsearch from source\n",
|
||
"! wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.9.2-linux-x86_64.tar.gz -q\n",
|
||
"! tar -xzf elasticsearch-7.9.2-linux-x86_64.tar.gz\n",
|
||
"! chown -R daemon:daemon elasticsearch-7.9.2\n",
|
||
"\n",
|
||
"import os\n",
|
||
"from subprocess import Popen, PIPE, STDOUT\n",
|
||
"es_server = Popen(['elasticsearch-7.9.2/bin/elasticsearch'],\n",
|
||
" stdout=PIPE, stderr=STDOUT,\n",
|
||
" preexec_fn=lambda: os.setuid(1) # as daemon\n",
|
||
" )\n",
|
||
"# wait until ES has started\n",
|
||
"! sleep 30"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 54
|
||
},
|
||
"colab_type": "code",
|
||
"id": "w0MHgxrYOhur",
|
||
"outputId": "9e530bf3-44b1-4ea1-86e2-8be0bb9163ad",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from haystack.modeling.utils import initialize_device_settings\n",
|
||
"\n",
|
||
"device, n_gpu = initialize_device_settings(use_cuda=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 87
|
||
},
|
||
"colab_type": "code",
|
||
"id": "tTXxr6TAOhuz",
|
||
"outputId": "99a4e32b-e0ec-4c94-dab3-1a09c53d4dc1",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from haystack.preprocessor.utils import fetch_archive_from_http\n",
|
||
"\n",
|
||
"# Download evaluation data, which is a subset of Natural Questions development set containing 50 documents\n",
|
||
"doc_dir = \"../data/nq\"\n",
|
||
"s3_url = \"https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/nq_dev_subset_v2.json.zip\"\n",
|
||
"fetch_archive_from_http(url=s3_url, output_dir=doc_dir)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# make sure these indices do not collide with existing ones, the indices will be wiped clean before data is inserted\n",
|
||
"doc_index = \"tutorial5_docs\"\n",
|
||
"label_index = \"tutorial5_labels\""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {},
|
||
"colab_type": "code",
|
||
"id": "B_NEtezLOhu5",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Connect to Elasticsearch\n",
|
||
"from haystack.document_store.elasticsearch import ElasticsearchDocumentStore\n",
|
||
"\n",
|
||
"# Connect to Elasticsearch\n",
|
||
"document_store = ElasticsearchDocumentStore(host=\"localhost\", username=\"\", password=\"\", index=\"document\",\n",
|
||
" create_index=False, embedding_field=\"emb\",\n",
|
||
" embedding_dim=768, excluded_meta_data=[\"emb\"])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 71
|
||
},
|
||
"colab_type": "code",
|
||
"id": "bRFsQUAJOhu_",
|
||
"outputId": "56b84800-c524-4418-9664-e2720b66a1af",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from haystack.preprocessor import PreProcessor\n",
|
||
"\n",
|
||
"# Add evaluation data to Elasticsearch Document Store\n",
|
||
"# We first delete the custom tutorial indices to not have duplicate elements\n",
|
||
"# and also split our documents into shorter passages using the PreProcessor\n",
|
||
"preprocessor = PreProcessor(\n",
|
||
" split_length=500,\n",
|
||
" split_overlap=0,\n",
|
||
" split_respect_sentence_boundary=False,\n",
|
||
" clean_empty_lines=False,\n",
|
||
" clean_whitespace=False\n",
|
||
")\n",
|
||
"document_store.delete_documents(index=doc_index)\n",
|
||
"document_store.delete_documents(index=label_index)\n",
|
||
"document_store.add_eval_data(\n",
|
||
" filename=\"../data/nq/nq_dev_subset_v2.json\",\n",
|
||
" doc_index=doc_index,\n",
|
||
" label_index=label_index,\n",
|
||
" preprocessor=preprocessor\n",
|
||
")\n",
|
||
"\n",
|
||
"# Let's prepare the labels that we need for the retriever and the reader\n",
|
||
"labels = document_store.get_all_labels_aggregated(index=label_index, drop_negative_labels=True, drop_no_answers=False)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"colab_type": "text",
|
||
"id": "gy8YwmSYOhvE",
|
||
"pycharm": {
|
||
"name": "#%% md\n"
|
||
}
|
||
},
|
||
"source": [
|
||
"## Initialize components of QA-System"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {},
|
||
"colab_type": "code",
|
||
"id": "JkhaPMIJOhvF",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Initialize Retriever\n",
|
||
"from haystack.retriever.sparse import ElasticsearchRetriever\n",
|
||
"retriever = ElasticsearchRetriever(document_store=document_store)\n",
|
||
"# Alternative: Evaluate DensePassageRetriever\n",
|
||
"# Note, that DPR works best when you index short passages < 512 tokens as only those tokens will be used for the embedding.\n",
|
||
"# Here, for nq_dev_subset_v2.json we have avg. num of tokens = 5220(!).\n",
|
||
"# DPR still outperforms Elastic's BM25 by a small margin here.\n",
|
||
"# from haystack.retriever.dense import DensePassageRetriever\n",
|
||
"# retriever = DensePassageRetriever(document_store=document_store,\n",
|
||
"# query_embedding_model=\"facebook/dpr-question_encoder-single-nq-base\",\n",
|
||
"# passage_embedding_model=\"facebook/dpr-ctx_encoder-single-nq-base\",\n",
|
||
"# use_gpu=True,\n",
|
||
"# embed_title=True,\n",
|
||
"# max_seq_len=256,\n",
|
||
"# batch_size=16,\n",
|
||
"# remove_sep_tok_from_untitled_passages=True)\n",
|
||
"#document_store.update_embeddings(retriever, index=doc_index)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 725,
|
||
"referenced_widgets": [
|
||
"398e8dc496594a5f8e65daecc3ddad4a",
|
||
"ee436c1e0fb24802b5d0706299ce7e81",
|
||
"9f5b31e32c5c4398a6eede32431ad55e",
|
||
"479f015ad2e8412d96a34ddb59a054d1",
|
||
"eb25be6e7fcc49cfbf9815d69f849637",
|
||
"f7ebc8ee77094382a2b26f879cdf8613",
|
||
"93e868a4b6384840b3d245391ee2915a",
|
||
"e4a33236e1954bbf83e57ff15c40ff7f",
|
||
"18250ec6840147658d1e038138f8aba0",
|
||
"a8ba7f1398f2401b8d0139aabdf6ce1f",
|
||
"49daa700f016433e88b492490b1a8d89",
|
||
"08adb4accbe649fd9d21da2246c00d63",
|
||
"c840113abcc44f84a88e6120fe198fba",
|
||
"47e0a33131714f31bb8b4a456b54d060",
|
||
"75ed8c01b4ed4c37a024a6c24036e35a",
|
||
"7675cb36a32e49b1b14d301bf29fa668",
|
||
"ec3c00e615164fb488ebfb51d8ac9d9e",
|
||
"9da0f76f26294b27982e080b8af6e28b",
|
||
"ef78454fe89347ea8f6f3148e23440db",
|
||
"bbbeec7c73c24059bffd602af5dcbd62",
|
||
"cb53b988f7df44d29ff7efcb0a236fce",
|
||
"8b9a20a51500438c9d6e84d9f71e8cbd",
|
||
"082e03f9f75c4546bd5b2326b33e8017",
|
||
"9c78a3ef3d804f89b4102a5029415e35",
|
||
"9597bad322c34d02a0c10dd66b21813e",
|
||
"62661d74e0ea462cb6b8e574aa17dc2f",
|
||
"71416028306340ee8987d703b506245b",
|
||
"100352c2499749e48ed10f3dee4f569d",
|
||
"dd518bb2a8d141f58118e2cf7e140ffb",
|
||
"5957d73fcef34606ac8eac654b9584d4",
|
||
"5c8d0662ec12422a83525292cc6a51ac",
|
||
"45469f8ddb3b4df8aab3e7ca3fbe6921",
|
||
"6c5fb91a498840a1a2cae914660f8684",
|
||
"1314e2ff61264f81acaf0042efd0cf5a",
|
||
"fce574414e154590a4a642362db98421",
|
||
"7937f15a8f874591bb693ce1546c7c5b",
|
||
"706c079c7d484975ad69a91b3f95e9f3",
|
||
"4473fa7bf766425bb704bb9772c021fd",
|
||
"ef088eda6fe04abe958059620da9b5d0",
|
||
"e1819597e4d840b19cfa8aba00ef3ef1",
|
||
"19173b1d00314580a4f40efa0df4b174",
|
||
"d7ce404f2f784b0f93abf8f3ba592e18",
|
||
"9da1585dcdd440fa8b2e8351ffeba348",
|
||
"8880e647ca4a4796b571f5b983b541b4",
|
||
"01d9cd6656494aef83a3947945c0acdd",
|
||
"b01601a11a324141b2d88190a87ef950",
|
||
"c7db7b055dbe4361965ca4ab8c028536",
|
||
"c1852f69951e4d80aecb5a6c942b2ca6"
|
||
]
|
||
},
|
||
"colab_type": "code",
|
||
"id": "cW3Ypn_gOhvK",
|
||
"outputId": "89ad5598-1017-499f-c986-72bba2a3a6cb",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Initialize Reader\n",
|
||
"from haystack.reader.farm import FARMReader\n",
|
||
"\n",
|
||
"reader = FARMReader(\"deepset/roberta-base-squad2\", top_k=4, return_no_answer=True)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"outputs": [],
|
||
"source": [
|
||
"from haystack.eval import EvalAnswers, EvalDocuments\n",
|
||
"\n",
|
||
"# Here we initialize the nodes that perform evaluation\n",
|
||
"eval_retriever = EvalDocuments()\n",
|
||
"eval_reader = EvalAnswers(sas_model=\"sentence-transformers/paraphrase-multilingual-mpnet-base-v2\")"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false,
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"colab_type": "text",
|
||
"id": "qwkBgzh5OhvR",
|
||
"pycharm": {
|
||
"name": "#%% md\n"
|
||
}
|
||
},
|
||
"source": [
|
||
"## Evaluation of Retriever\n",
|
||
"Here we evaluate only the retriever, based on whether the gold_label document is retrieved."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 1000
|
||
},
|
||
"colab_type": "code",
|
||
"id": "YzvLhnx3OhvS",
|
||
"outputId": "1d45f072-0ae0-4864-8ccc-aa12303a8d04",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"## Evaluate Retriever on its own\n",
|
||
"retriever_eval_results = retriever.eval(top_k=20, label_index=label_index, doc_index=doc_index)\n",
|
||
"## Retriever Recall is the proportion of questions for which the correct document containing the answer is\n",
|
||
"## among the correct documents\n",
|
||
"print(\"Retriever Recall:\", retriever_eval_results[\"recall\"])\n",
|
||
"## Retriever Mean Avg Precision rewards retrievers that give relevant documents a higher rank\n",
|
||
"print(\"Retriever Mean Avg Precision:\", retriever_eval_results[\"map\"])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"colab_type": "text",
|
||
"id": "fjZRnB6bOhvW",
|
||
"pycharm": {
|
||
"name": "#%% md\n"
|
||
}
|
||
},
|
||
"source": [
|
||
"## Evaluation of Reader\n",
|
||
"Here we evaluate only the reader in a closed domain fashion i.e. the reader is given one query\n",
|
||
"and one document and metrics are calculated on whether the right position in this text is selected by\n",
|
||
"the model as the answer span (i.e. SQuAD style)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 203
|
||
},
|
||
"colab_type": "code",
|
||
"id": "Lgsgf4KaOhvY",
|
||
"outputId": "24d3755e-bf2e-4396-f1a2-59c925cc54d3",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Evaluate Reader on its own\n",
|
||
"reader_eval_results = reader.eval(document_store=document_store, device=device, label_index=label_index, doc_index=doc_index)\n",
|
||
"# Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch\n",
|
||
"#reader_eval_results = reader.eval_on_file(\"../data/nq\", \"nq_dev_subset_v2.json\", device=device)\n",
|
||
"\n",
|
||
"## Reader Top-N-Accuracy is the proportion of predicted answers that match with their corresponding correct answer\n",
|
||
"print(\"Reader Top-N-Accuracy:\", reader_eval_results[\"top_n_accuracy\"])\n",
|
||
"## Reader Exact Match is the proportion of questions where the predicted answer is exactly the same as the correct answer\n",
|
||
"print(\"Reader Exact Match:\", reader_eval_results[\"EM\"])\n",
|
||
"## Reader F1-Score is the average overlap between the predicted answers and the correct answers\n",
|
||
"print(\"Reader F1-Score:\", reader_eval_results[\"f1\"])"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"colab_type": "text",
|
||
"id": "7i84KXONOhvc",
|
||
"pycharm": {
|
||
"name": "#%% md\n"
|
||
}
|
||
},
|
||
"source": [
|
||
"## Evaluation of Retriever and Reader (Open Domain)\n",
|
||
"Here we evaluate retriever and reader in open domain fashion i.e. a document is considered\n",
|
||
"correctly retrieved if it contains the answer string within it. The reader is evaluated based purely on the\n",
|
||
"predicted string, regardless of which document this came from and the position of the extracted span."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 1000
|
||
},
|
||
"colab_type": "code",
|
||
"id": "yLpMHAexOhvd",
|
||
"outputId": "fd74be7d-5c8e-4eb9-a653-062427b74347",
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"from haystack import Pipeline\n",
|
||
"\n",
|
||
"# Here is the pipeline definition\n",
|
||
"p = Pipeline()\n",
|
||
"p.add_node(component=retriever, name=\"ESRetriever\", inputs=[\"Query\"])\n",
|
||
"p.add_node(component=eval_retriever, name=\"EvalRetriever\", inputs=[\"ESRetriever\"])\n",
|
||
"p.add_node(component=reader, name=\"QAReader\", inputs=[\"EvalRetriever\"])\n",
|
||
"p.add_node(component=eval_reader, name=\"EvalReader\", inputs=[\"QAReader\"])\n",
|
||
"results = []"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"outputs": [
|
||
{
|
||
"ename": "SyntaxError",
|
||
"evalue": "invalid syntax (<ipython-input-1-ae565b9a84f2>, line 10)",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001B[0;36m File \u001B[0;32m\"<ipython-input-1-ae565b9a84f2>\"\u001B[0;36m, line \u001B[0;32m10\u001B[0m\n\u001B[0;31m index=doc_index,\u001B[0m\n\u001B[0m ^\u001B[0m\n\u001B[0;31mSyntaxError\u001B[0m\u001B[0;31m:\u001B[0m invalid syntax\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# This is how to run the pipeline\n",
|
||
"for l in labels:\n",
|
||
" res = p.run(\n",
|
||
" query=l.query,\n",
|
||
" labels=l,\n",
|
||
" params={\"index\": doc_index, \"Retriever\": {\"top_k\": 10}, \"Reader\": {\"top_k\": 5}},\n",
|
||
" )\n",
|
||
" results.append(res)"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false,
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"outputs": [],
|
||
"source": [
|
||
"# When we have run evaluation using the pipeline, we can print the results\n",
|
||
"n_queries = len(labels)\n",
|
||
"eval_retriever.print()\n",
|
||
"print()\n",
|
||
"retriever.print_time()\n",
|
||
"print()\n",
|
||
"eval_reader.print(mode=\"reader\")\n",
|
||
"print()\n",
|
||
"reader.print_time()\n",
|
||
"print()\n",
|
||
"eval_reader.print(mode=\"pipeline\")"
|
||
],
|
||
"metadata": {
|
||
"collapsed": false,
|
||
"pycharm": {
|
||
"name": "#%%\n"
|
||
}
|
||
}
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"source": [
|
||
"## About us\n",
|
||
"\n",
|
||
"This [Haystack](https://github.com/deepset-ai/haystack/) notebook was made with love by [deepset](https://deepset.ai/) in Berlin, Germany\n",
|
||
"\n",
|
||
"We bring NLP to the industry via open source! \n",
|
||
"Our focus: Industry specific language models & large scale QA systems. \n",
|
||
" \n",
|
||
"Some of our other work: \n",
|
||
"- [German BERT](https://deepset.ai/german-bert)\n",
|
||
"- [GermanQuAD and GermanDPR](https://deepset.ai/germanquad)\n",
|
||
"- [FARM](https://github.com/deepset-ai/FARM)\n",
|
||
"\n",
|
||
"Get in touch:\n",
|
||
"[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)\n",
|
||
"\n",
|
||
"By the way: [we're hiring!](https://apply.workable.com/deepset/) "
|
||
],
|
||
"metadata": {
|
||
"collapsed": false
|
||
}
|
||
}
|
||
],
|
||
"metadata": {
|
||
"accelerator": "GPU",
|
||
"colab": {
|
||
"name": "Tutorial5_Evaluation.ipynb",
|
||
"provenance": []
|
||
},
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.6.9"
|
||
},
|
||
"widgets": {
|
||
"application/vnd.jupyter.widget-state+json": {
|
||
"01d9cd6656494aef83a3947945c0acdd": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"082e03f9f75c4546bd5b2326b33e8017": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"08adb4accbe649fd9d21da2246c00d63": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_7675cb36a32e49b1b14d301bf29fa668",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_75ed8c01b4ed4c37a024a6c24036e35a",
|
||
"value": " 499M/499M [00:41<00:00, 11.9MB/s]"
|
||
}
|
||
},
|
||
"100352c2499749e48ed10f3dee4f569d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_45469f8ddb3b4df8aab3e7ca3fbe6921",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_5c8d0662ec12422a83525292cc6a51ac",
|
||
"value": " 456k/456k [00:04<00:00, 92.6kB/s]"
|
||
}
|
||
},
|
||
"1314e2ff61264f81acaf0042efd0cf5a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"18250ec6840147658d1e038138f8aba0": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_49daa700f016433e88b492490b1a8d89",
|
||
"IPY_MODEL_08adb4accbe649fd9d21da2246c00d63"
|
||
],
|
||
"layout": "IPY_MODEL_a8ba7f1398f2401b8d0139aabdf6ce1f"
|
||
}
|
||
},
|
||
"19173b1d00314580a4f40efa0df4b174": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_9da1585dcdd440fa8b2e8351ffeba348",
|
||
"IPY_MODEL_8880e647ca4a4796b571f5b983b541b4"
|
||
],
|
||
"layout": "IPY_MODEL_d7ce404f2f784b0f93abf8f3ba592e18"
|
||
}
|
||
},
|
||
"398e8dc496594a5f8e65daecc3ddad4a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_9f5b31e32c5c4398a6eede32431ad55e",
|
||
"IPY_MODEL_479f015ad2e8412d96a34ddb59a054d1"
|
||
],
|
||
"layout": "IPY_MODEL_ee436c1e0fb24802b5d0706299ce7e81"
|
||
}
|
||
},
|
||
"4473fa7bf766425bb704bb9772c021fd": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"45469f8ddb3b4df8aab3e7ca3fbe6921": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"479f015ad2e8412d96a34ddb59a054d1": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e4a33236e1954bbf83e57ff15c40ff7f",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_93e868a4b6384840b3d245391ee2915a",
|
||
"value": " 559/559 [00:54<00:00, 10.3B/s]"
|
||
}
|
||
},
|
||
"47e0a33131714f31bb8b4a456b54d060": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"49daa700f016433e88b492490b1a8d89": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "Downloading: 100%",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_47e0a33131714f31bb8b4a456b54d060",
|
||
"max": 498637366,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_c840113abcc44f84a88e6120fe198fba",
|
||
"value": 498637366
|
||
}
|
||
},
|
||
"5957d73fcef34606ac8eac654b9584d4": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"5c8d0662ec12422a83525292cc6a51ac": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"62661d74e0ea462cb6b8e574aa17dc2f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"6c5fb91a498840a1a2cae914660f8684": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_fce574414e154590a4a642362db98421",
|
||
"IPY_MODEL_7937f15a8f874591bb693ce1546c7c5b"
|
||
],
|
||
"layout": "IPY_MODEL_1314e2ff61264f81acaf0042efd0cf5a"
|
||
}
|
||
},
|
||
"706c079c7d484975ad69a91b3f95e9f3": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"71416028306340ee8987d703b506245b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "Downloading: 100%",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_5957d73fcef34606ac8eac654b9584d4",
|
||
"max": 456318,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_dd518bb2a8d141f58118e2cf7e140ffb",
|
||
"value": 456318
|
||
}
|
||
},
|
||
"75ed8c01b4ed4c37a024a6c24036e35a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"7675cb36a32e49b1b14d301bf29fa668": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"7937f15a8f874591bb693ce1546c7c5b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e1819597e4d840b19cfa8aba00ef3ef1",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_ef088eda6fe04abe958059620da9b5d0",
|
||
"value": " 150/150 [00:01<00:00, 89.2B/s]"
|
||
}
|
||
},
|
||
"8880e647ca4a4796b571f5b983b541b4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_c1852f69951e4d80aecb5a6c942b2ca6",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_c7db7b055dbe4361965ca4ab8c028536",
|
||
"value": " 189/189 [00:00<00:00, 1.94kB/s]"
|
||
}
|
||
},
|
||
"8b9a20a51500438c9d6e84d9f71e8cbd": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"93e868a4b6384840b3d245391ee2915a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"9597bad322c34d02a0c10dd66b21813e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_71416028306340ee8987d703b506245b",
|
||
"IPY_MODEL_100352c2499749e48ed10f3dee4f569d"
|
||
],
|
||
"layout": "IPY_MODEL_62661d74e0ea462cb6b8e574aa17dc2f"
|
||
}
|
||
},
|
||
"9c78a3ef3d804f89b4102a5029415e35": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"9da0f76f26294b27982e080b8af6e28b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"9da1585dcdd440fa8b2e8351ffeba348": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "Downloading: 100%",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b01601a11a324141b2d88190a87ef950",
|
||
"max": 189,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_01d9cd6656494aef83a3947945c0acdd",
|
||
"value": 189
|
||
}
|
||
},
|
||
"9f5b31e32c5c4398a6eede32431ad55e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "Downloading: 100%",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_f7ebc8ee77094382a2b26f879cdf8613",
|
||
"max": 559,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_eb25be6e7fcc49cfbf9815d69f849637",
|
||
"value": 559
|
||
}
|
||
},
|
||
"a8ba7f1398f2401b8d0139aabdf6ce1f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b01601a11a324141b2d88190a87ef950": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"bbbeec7c73c24059bffd602af5dcbd62": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_9c78a3ef3d804f89b4102a5029415e35",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_082e03f9f75c4546bd5b2326b33e8017",
|
||
"value": " 899k/899k [00:02<00:00, 334kB/s]"
|
||
}
|
||
},
|
||
"c1852f69951e4d80aecb5a6c942b2ca6": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"c7db7b055dbe4361965ca4ab8c028536": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"c840113abcc44f84a88e6120fe198fba": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"cb53b988f7df44d29ff7efcb0a236fce": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"d7ce404f2f784b0f93abf8f3ba592e18": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"dd518bb2a8d141f58118e2cf7e140ffb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"e1819597e4d840b19cfa8aba00ef3ef1": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e4a33236e1954bbf83e57ff15c40ff7f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"eb25be6e7fcc49cfbf9815d69f849637": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": "initial"
|
||
}
|
||
},
|
||
"ec3c00e615164fb488ebfb51d8ac9d9e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_ef78454fe89347ea8f6f3148e23440db",
|
||
"IPY_MODEL_bbbeec7c73c24059bffd602af5dcbd62"
|
||
],
|
||
"layout": "IPY_MODEL_9da0f76f26294b27982e080b8af6e28b"
|
||
}
|
||
},
|
||
"ee436c1e0fb24802b5d0706299ce7e81": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"ef088eda6fe04abe958059620da9b5d0": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"ef78454fe89347ea8f6f3148e23440db": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "Downloading: 100%",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_8b9a20a51500438c9d6e84d9f71e8cbd",
|
||
"max": 898822,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_cb53b988f7df44d29ff7efcb0a236fce",
|
||
"value": 898822
|
||
}
|
||
},
|
||
"f7ebc8ee77094382a2b26f879cdf8613": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"fce574414e154590a4a642362db98421": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "Downloading: 100%",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_4473fa7bf766425bb704bb9772c021fd",
|
||
"max": 150,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_706c079c7d484975ad69a91b3f95e9f3",
|
||
"value": 150
|
||
}
|
||
}
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 1
|
||
} |