mirror of
				https://github.com/deepset-ai/haystack.git
				synced 2025-10-30 17:29:29 +00:00 
			
		
		
		
	 29e140196b
			
		
	
	
		29e140196b
		
			
		
	
	
	
	
		
			
			* [pipeline] Allow for batch indexing when using Pipelines fix #1168 * [pipeline] Test case fixed fix #1168 * [file_converter] Path.suffix updated #1168 * [file_converter] meta can be one of these three cases: A single dict that is applied to all files One dict for each file being converted None #1168 * [file_converter] mypy error fixed. * [file_converter] mypy error fixed. * [rest_api] batch file upload introduced in indexing API. * [test_case] Test_api file upload parameter name updated. * [ui] Streamlit file upload parameter updated.
		
			
				
	
	
		
			64 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| 
 | |
| import requests
 | |
| import streamlit as st
 | |
| 
 | |
| API_ENDPOINT = os.getenv("API_ENDPOINT", "http://localhost:8000")
 | |
| DOC_REQUEST = "query"
 | |
| DOC_FEEDBACK = "feedback"
 | |
| DOC_UPLOAD = "file-upload"
 | |
| 
 | |
| 
 | |
| @st.cache(show_spinner=False)
 | |
| def retrieve_doc(query, filters=None, top_k_reader=5, top_k_retriever=5):
 | |
|     # Query Haystack API
 | |
|     url = f"{API_ENDPOINT}/{DOC_REQUEST}"
 | |
|     req = {"query": query, "filters": filters, "top_k_retriever": top_k_retriever, "top_k_reader": top_k_reader}
 | |
|     response_raw = requests.post(url, json=req).json()
 | |
| 
 | |
|     # Format response
 | |
|     result = []
 | |
|     answers = response_raw["answers"]
 | |
|     for i in range(len(answers)):
 | |
|         answer = answers[i]["answer"]
 | |
|         if answer:
 | |
|             context = "..." + answers[i]["context"] + "..."
 | |
|             meta_name = answers[i]["meta"]["name"]
 | |
|             relevance = round(answers[i]["probability"] * 100, 2)
 | |
|             document_id = answers[i]["document_id"]
 | |
|             offset_start_in_doc = answers[i]["offset_start_in_doc"]
 | |
|             result.append(
 | |
|                 {
 | |
|                     "context": context,
 | |
|                     "answer": answer,
 | |
|                     "source": meta_name,
 | |
|                     "relevance": relevance,
 | |
|                     "document_id": document_id,
 | |
|                     "offset_start_in_doc": offset_start_in_doc,
 | |
|                 }
 | |
|             )
 | |
|     return result, response_raw
 | |
| 
 | |
| 
 | |
| def feedback_doc(question, is_correct_answer, document_id, model_id, is_correct_document, answer, offset_start_in_doc):
 | |
|     # Feedback Haystack API
 | |
|     url = f"{API_ENDPOINT}/{DOC_FEEDBACK}"
 | |
|     req = {
 | |
|         "question": question,
 | |
|         "is_correct_answer": is_correct_answer,
 | |
|         "document_id": document_id,
 | |
|         "model_id": model_id,
 | |
|         "is_correct_document": is_correct_document,
 | |
|         "answer": answer,
 | |
|         "offset_start_in_doc": offset_start_in_doc,
 | |
|     }
 | |
|     response_raw = requests.post(url, json=req).json()
 | |
|     return response_raw
 | |
| 
 | |
| 
 | |
| def upload_doc(file):
 | |
|     url = f"{API_ENDPOINT}/{DOC_UPLOAD}"
 | |
|     files = [("files", file)]
 | |
|     response_raw = requests.post(url, files=files).json()
 | |
|     return response_raw
 |