haystack/test/nodes/test_label_generator.py
Sara Zan 59608ca474
[CI Refactoring] Workflow refactoring (#2576)
* Unify CI tests (from #2466)

* Update Documentation & Code Style

* Change folder names

* Fix markers list

* Remove marker 'slow', replaced with 'integration'

* Soften children check

* Start ES first so it has time to boot while Python is setup

* Run the full workflow

* Try to make pip upgrade on Windows

* Set KG tests as integration

* Update Documentation & Code Style

* typo

* faster pylint

* Make Pylint use the cache

* filter diff files for pylint

* debug pylint statement

* revert pylint changes

* Remove path from asserted log (fails on Windows)

* Skip preprocessor test on Windows

* Tackling Windows specific failures

* Fix pytest command for windows suites

* Remove \ from command

* Move poppler test into integration

* Skip opensearch test on windows

* Add tolerance in reader sas score for Windows

* Another pytorch approx

* Raise time limit for unit tests :(

* Skip poppler test on Windows CI

* Specify to pull with FF only in docs check

* temporarily run the docs check immediately

* Allow merge commit for now

* Try without fetch depth

* Accelerating test

* Accelerating test

* Add repository and ref alongside fetch-depth

* Separate out code&docs check from tests

* Use setup-python cache

* Delete custom action

* Remove the pull step in the docs check, will find a way to run on bot commits

* Add requirements.txt in .github for caching

* Actually install dependencies

* Change deps group for pylint

* Unclear why the requirements.txt is still required :/

* Fix the code check python setup

* Install all deps for pylint

* Make the autoformat check depend on tests and doc updates workflows

* Try installing dependencies in another order

* Try again to install the deps

* quoting the paths

* Ad back the requirements

* Try again to install rest_api and ui

* Change deps group

* Duplicate haystack install line

* See if the cache is the problem

* Disable also in mypy, who knows

* split the install step

* Split install step everywhere

* Revert "Separate out code&docs check from tests"

This reverts commit 1cd59b15ffc5b984e1d642dcbf4c8ccc2bb6c9bd.

* Add back the action

* Proactive support for audio (see text2speech branch)

* Fix label generator tests

* Remove install of libsndfile1 on win temporarily

* exclude audio tests on win

* install ffmpeg for integration tests

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-06-07 09:23:03 +02:00

63 lines
2.4 KiB
Python

from pathlib import Path
import pytest
from haystack.nodes import QuestionGenerator, EmbeddingRetriever, PseudoLabelGenerator
from test.conftest import DOCS_WITH_EMBEDDINGS
@pytest.mark.generator
@pytest.mark.integration
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
def test_pseudo_label_generator(
document_store, retriever: EmbeddingRetriever, question_generator: QuestionGenerator, tmp_path: Path
):
document_store.write_documents(DOCS_WITH_EMBEDDINGS)
psg = PseudoLabelGenerator(question_generator, retriever)
train_examples = []
for idx, doc in enumerate(document_store):
output, stream = psg.run(documents=[doc])
assert "gpl_labels" in output
for item in output["gpl_labels"]:
assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
train_examples.append(item)
assert len(train_examples) > 0
retriever.train(train_examples)
retriever.save(tmp_path)
@pytest.mark.generator
@pytest.mark.integration
@pytest.mark.parametrize("document_store", ["memory"], indirect=True)
@pytest.mark.parametrize("retriever", ["embedding_sbert"], indirect=True)
def test_pseudo_label_generator_using_question_document_pairs(
document_store, retriever: EmbeddingRetriever, tmp_path: Path
):
document_store.write_documents(DOCS_WITH_EMBEDDINGS)
docs = [
{
"question": "What is the capital of Germany?",
"document": "Berlin is the capital and largest city of Germany by both area and population.",
},
{
"question": "What is the largest city in Germany by population and area?",
"document": "Berlin is the capital and largest city of Germany by both area and population.",
},
]
psg = PseudoLabelGenerator(docs, retriever)
train_examples = []
for idx, doc in enumerate(document_store):
# the documents passed here are ignored as we provided source documents in the constructor
output, stream = psg.run(documents=[doc])
assert "gpl_labels" in output
for item in output["gpl_labels"]:
assert "question" in item and "pos_doc" in item and "neg_doc" in item and "score" in item
train_examples.append(item)
assert len(train_examples) > 0
retriever.train(train_examples)
retriever.save(tmp_path)