10 KiB
| title | id | description | slug |
|---|---|---|---|
| OpenRouter | integrations-openrouter | OpenRouter integration for Haystack | /integrations-openrouter |
Module haystack_integrations.components.generators.openrouter.chat.chat_generator
OpenRouterChatGenerator
Enables text generation using OpenRouter generative models. For supported models, see OpenRouter docs.
Users can pass any text generation parameters valid for the OpenRouter chat completion API
directly to this component using the generation_kwargs parameter in __init__ or the generation_kwargs
parameter in run method.
Key Features and Compatibility:
- Primary Compatibility: Designed to work seamlessly with the OpenRouter chat completion endpoint.
- Streaming Support: Supports streaming responses from the OpenRouter chat completion endpoint.
- Customizability: Supports all parameters supported by the OpenRouter chat completion endpoint.
This component uses the ChatMessage format for structuring both input and output, ensuring coherent and contextually relevant responses in chat-based text generation scenarios. Details on the ChatMessage format can be found in the Haystack docs
For more details on the parameters supported by the OpenRouter API, refer to the OpenRouter API Docs.
Usage example:
from haystack_integrations.components.generators.openrouter import OpenRouterChatGenerator
from haystack.dataclasses import ChatMessage
messages = [ChatMessage.from_user("What's Natural Language Processing?")]
client = OpenRouterChatGenerator()
response = client.run(messages)
print(response)
>>{'replies': [ChatMessage(_content='Natural Language Processing (NLP) is a branch of artificial intelligence
>>that focuses on enabling computers to understand, interpret, and generate human language in a way that is
>>meaningful and useful.', _role=<ChatRole.ASSISTANT: 'assistant'>, _name=None,
>>_meta={'model': 'openai/gpt-4o-mini', 'index': 0, 'finish_reason': 'stop',
>>'usage': {'prompt_tokens': 15, 'completion_tokens': 36, 'total_tokens': 51}})]}
OpenRouterChatGenerator.__init__
def __init__(*,
api_key: Secret = Secret.from_env_var("OPENROUTER_API_KEY"),
model: str = "openai/gpt-4o-mini",
streaming_callback: Optional[StreamingCallbackT] = None,
api_base_url: Optional[str] = "https://openrouter.ai/api/v1",
generation_kwargs: Optional[Dict[str, Any]] = None,
tools: Optional[ToolsType] = None,
timeout: Optional[float] = None,
extra_headers: Optional[Dict[str, Any]] = None,
max_retries: Optional[int] = None,
http_client_kwargs: Optional[Dict[str, Any]] = None)
Creates an instance of OpenRouterChatGenerator. Unless specified otherwise,
the default model is openai/gpt-4o-mini.
Arguments:
api_key: The OpenRouter API key.model: The name of the OpenRouter chat completion model to use.streaming_callback: A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument.api_base_url: The OpenRouter API Base url. For more details, see OpenRouter docs.generation_kwargs: Other parameters to use for the model. These parameters are all sent directly to the OpenRouter endpoint. See OpenRouter API docs for more details. Some of the supported parameters:max_tokens: The maximum number of tokens the output text can have.temperature: What sampling temperature to use. Higher values mean the model will take more risks. Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer.top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.stream: Whether to stream back partial progress. If set, tokens will be sent as data-only server-sent events as they become available, with the stream terminated by a data: [DONE] message.safe_prompt: Whether to inject a safety prompt before all conversations.random_seed: The seed to use for random sampling.response_format: A JSON schema or a Pydantic model that enforces the structure of the model's response. If provided, the output will always be validated against this format (unless the model returns a tool call). For details, see the OpenAI Structured Outputs documentation. Notes:- This parameter accepts Pydantic models and JSON schemas for latest models starting from GPT-4o.
- For structured outputs with streaming,
the
response_formatmust be a JSON schema and not a Pydantic model.
tools: A list of tools or a Toolset for which the model can prepare calls. This parameter can accept either a list ofToolobjects or aToolsetinstance.timeout: The timeout for the OpenRouter API call.extra_headers: Additional HTTP headers to include in requests to the OpenRouter API. This can be useful for adding site URL or title for rankings on openrouter.ai For more details, see OpenRouter docs.max_retries: Maximum number of retries to contact OpenAI after an internal error. If not set, it defaults to either theOPENAI_MAX_RETRIESenvironment variable, or set to 5.http_client_kwargs: A dictionary of keyword arguments to configure a customhttpx.Clientorhttpx.AsyncClient. For more information, see the HTTPX documentation.
OpenRouterChatGenerator.to_dict
def to_dict() -> Dict[str, Any]
Serialize this component to a dictionary.
Returns:
The serialized component as a dictionary.
OpenRouterChatGenerator.from_dict
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "OpenAIChatGenerator"
Deserialize this component from a dictionary.
Arguments:
data: The dictionary representation of this component.
Returns:
The deserialized component instance.
OpenRouterChatGenerator.run
@component.output_types(replies=list[ChatMessage])
def run(messages: list[ChatMessage],
streaming_callback: Optional[StreamingCallbackT] = None,
generation_kwargs: Optional[dict[str, Any]] = None,
*,
tools: Optional[ToolsType] = None,
tools_strict: Optional[bool] = None)
Invokes chat completion based on the provided messages and generation parameters.
Arguments:
messages: A list of ChatMessage instances representing the input messages.streaming_callback: A callback function that is called when a new token is received from the stream.generation_kwargs: Additional keyword arguments for text generation. These parameters will override the parameters passed during component initialization. For details on OpenAI API parameters, see OpenAI documentation.tools: A list of Tool and/or Toolset objects, or a single Toolset for which the model can prepare calls. If set, it will override thetoolsparameter provided during initialization.tools_strict: Whether to enable strict schema adherence for tool calls. If set toTrue, the model will follow exactly the schema provided in theparametersfield of the tool definition, but this may increase latency. If set, it will override thetools_strictparameter set during component initialization.
Returns:
A dictionary with the following key:
replies: A list containing the generated responses as ChatMessage instances.
OpenRouterChatGenerator.run_async
@component.output_types(replies=list[ChatMessage])
async def run_async(messages: list[ChatMessage],
streaming_callback: Optional[StreamingCallbackT] = None,
generation_kwargs: Optional[dict[str, Any]] = None,
*,
tools: Optional[ToolsType] = None,
tools_strict: Optional[bool] = None)
Asynchronously invokes chat completion based on the provided messages and generation parameters.
This is the asynchronous version of the run method. It has the same parameters and return values
but can be used with await in async code.
Arguments:
messages: A list of ChatMessage instances representing the input messages.streaming_callback: A callback function that is called when a new token is received from the stream. Must be a coroutine.generation_kwargs: Additional keyword arguments for text generation. These parameters will override the parameters passed during component initialization. For details on OpenAI API parameters, see OpenAI documentation.tools: A list of Tool and/or Toolset objects, or a single Toolset for which the model can prepare calls. If set, it will override thetoolsparameter provided during initialization.tools_strict: Whether to enable strict schema adherence for tool calls. If set toTrue, the model will follow exactly the schema provided in theparametersfield of the tool definition, but this may increase latency. If set, it will override thetools_strictparameter set during component initialization.
Returns:
A dictionary with the following key:
replies: A list containing the generated responses as ChatMessage instances.