haystack/test/conftest.py
Lalit Pagaria 9521e180b3
Standardize behavior of DocumentStores to return embeddings (#514)
* Adding support to return embedding along with other result via query_by_embedding function

* Adding test case to check return embedding

* By default for all tests but DPR tests: disable return_embedding flag

* Reducing None test case and fixing query_by_embedding of ElasticsearchDocumentStore when it updating self.excluded_meta_data directly

* Fixing mypy reported issue
2020-10-27 08:33:39 +01:00

222 lines
9.2 KiB
Python

import os
import subprocess
import time
from subprocess import run
from sys import platform
import pytest
import requests
from elasticsearch import Elasticsearch
from haystack.retriever.sparse import ElasticsearchFilterOnlyRetriever, ElasticsearchRetriever, TfidfRetriever
from haystack.retriever.dense import DensePassageRetriever, EmbeddingRetriever
from haystack import Document
from haystack.document_store.elasticsearch import ElasticsearchDocumentStore
from haystack.document_store.faiss import FAISSDocumentStore
from haystack.document_store.memory import InMemoryDocumentStore
from haystack.document_store.sql import SQLDocumentStore
from haystack.reader.farm import FARMReader
from haystack.reader.transformers import TransformersReader
@pytest.fixture(scope="session")
def elasticsearch_fixture():
# test if a ES cluster is already running. If not, download and start an ES instance locally.
try:
client = Elasticsearch(hosts=[{"host": "localhost", "port": "9200"}])
client.info()
except:
print("Starting Elasticsearch ...")
status = subprocess.run(
['docker rm haystack_test_elastic'],
shell=True
)
status = subprocess.run(
['docker run -d --name haystack_test_elastic -p 9200:9200 -e "discovery.type=single-node" elasticsearch:7.9.2'],
shell=True
)
if status.returncode:
raise Exception(
"Failed to launch Elasticsearch. Please check docker container logs.")
time.sleep(30)
@pytest.fixture(scope="session")
def tika_fixture():
try:
tika_url = "http://localhost:9998/tika"
ping = requests.get(tika_url)
if ping.status_code != 200:
raise Exception(
"Unable to connect Tika. Please check tika endpoint {0}.".format(tika_url))
except:
print("Starting Tika ...")
status = subprocess.run(
['docker run -d --name tika -p 9998:9998 apache/tika:1.24.1'],
shell=True
)
if status.returncode:
raise Exception(
"Failed to launch Tika. Please check docker container logs.")
time.sleep(30)
@pytest.fixture(scope="session")
def xpdf_fixture(tika_fixture):
verify_installation = run(["pdftotext"], shell=True)
if verify_installation.returncode == 127:
if platform.startswith("linux"):
platform_id = "linux"
sudo_prefix = "sudo"
elif platform.startswith("darwin"):
platform_id = "mac"
# For Mac, generally sudo need password in interactive console.
# But most of the cases current user already have permission to copy to /user/local/bin.
# Hence removing sudo requirement for Mac.
sudo_prefix = ""
else:
raise Exception(
"""Currently auto installation of pdftotext is not supported on {0} platform """.format(platform)
)
commands = """ wget --no-check-certificate https://dl.xpdfreader.com/xpdf-tools-{0}-4.02.tar.gz &&
tar -xvf xpdf-tools-{0}-4.02.tar.gz &&
{1} cp xpdf-tools-{0}-4.02/bin64/pdftotext /usr/local/bin""".format(platform_id, sudo_prefix)
run([commands], shell=True)
verify_installation = run(["pdftotext -v"], shell=True)
if verify_installation.returncode == 127:
raise Exception(
"""pdftotext is not installed. It is part of xpdf or poppler-utils software suite.
You can download for your OS from here: https://www.xpdfreader.com/download.html."""
)
@pytest.fixture(params=["elasticsearch", "faiss", "memory", "sql"])
def document_store(request, test_docs_xs, elasticsearch_fixture):
return get_document_store(request.param)
@pytest.fixture()
def test_docs_xs():
return [
# current "dict" format for a document
{"text": "My name is Carla and I live in Berlin", "meta": {"meta_field": "test1", "name": "filename1"}},
# meta_field at the top level for backward compatibility
{"text": "My name is Paul and I live in New York", "meta_field": "test2", "name": "filename2"},
# Document object for a doc
Document(text="My name is Christelle and I live in Paris", meta={"meta_field": "test3", "name": "filename3"})
]
@pytest.fixture(params=["farm", "transformers"])
def reader(request):
if request.param == "farm":
return FARMReader(model_name_or_path="distilbert-base-uncased-distilled-squad",
use_gpu=False, top_k_per_sample=5, num_processes=0)
if request.param == "transformers":
return TransformersReader(model_name_or_path="distilbert-base-uncased-distilled-squad",
tokenizer="distilbert-base-uncased",
use_gpu=-1)
# TODO Fix bug in test_no_answer_output when using
# @pytest.fixture(params=["farm", "transformers"])
@pytest.fixture(params=["farm"])
def no_answer_reader(request):
if request.param == "farm":
return FARMReader(model_name_or_path="deepset/roberta-base-squad2",
use_gpu=False, top_k_per_sample=5, no_ans_boost=0, num_processes=0)
if request.param == "transformers":
return TransformersReader(model_name_or_path="deepset/roberta-base-squad2",
tokenizer="deepset/roberta-base-squad2",
use_gpu=-1, top_k_per_candidate=5)
@pytest.fixture()
def prediction(reader, test_docs_xs):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
prediction = reader.predict(question="Who lives in Berlin?", documents=docs, top_k=5)
return prediction
@pytest.fixture()
def no_answer_prediction(no_answer_reader, test_docs_xs):
docs = [Document.from_dict(d) if isinstance(d, dict) else d for d in test_docs_xs]
prediction = no_answer_reader.predict(question="What is the meaning of life?", documents=docs, top_k=5)
return prediction
@pytest.fixture(params=["elasticsearch", "faiss", "memory", "sql"])
def document_store_with_docs(request, test_docs_xs, elasticsearch_fixture):
document_store = get_document_store(request.param)
document_store.write_documents(test_docs_xs)
yield document_store
if isinstance(document_store, FAISSDocumentStore):
document_store.faiss_index.reset()
@pytest.fixture(params=["elasticsearch", "faiss", "memory", "sql"])
def document_store(request, test_docs_xs, elasticsearch_fixture):
document_store = get_document_store(request.param)
yield document_store
if isinstance(document_store, FAISSDocumentStore):
document_store.faiss_index.reset()
@pytest.fixture(params=["es_filter_only", "elasticsearch", "dpr", "embedding", "tfidf"])
def retriever(request, document_store):
return get_retriever(request.param, document_store)
@pytest.fixture(params=["es_filter_only", "elasticsearch", "dpr", "embedding", "tfidf"])
def retriever_with_docs(request, document_store_with_docs):
return get_retriever(request.param, document_store_with_docs)
def get_document_store(document_store_type):
if document_store_type == "sql":
if os.path.exists("haystack_test.db"):
os.remove("haystack_test.db")
document_store = SQLDocumentStore(url="sqlite:///haystack_test.db")
elif document_store_type == "memory":
document_store = InMemoryDocumentStore(return_embedding=False)
elif document_store_type == "elasticsearch":
# make sure we start from a fresh index
client = Elasticsearch()
client.indices.delete(index='haystack_test*', ignore=[404])
document_store = ElasticsearchDocumentStore(index="haystack_test", return_embedding=False)
elif document_store_type == "faiss":
if os.path.exists("haystack_test_faiss.db"):
os.remove("haystack_test_faiss.db")
document_store = FAISSDocumentStore(sql_url="sqlite:///haystack_test_faiss.db", return_embedding=False)
else:
raise Exception(f"No document store fixture for '{document_store_type}'")
return document_store
def get_retriever(retriever_type, document_store):
if retriever_type == "dpr":
retriever = DensePassageRetriever(document_store=document_store,
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
use_gpu=False, embed_title=True,
remove_sep_tok_from_untitled_passages=True)
elif retriever_type == "tfidf":
return TfidfRetriever(document_store=document_store)
elif retriever_type == "embedding":
retriever = EmbeddingRetriever(document_store=document_store,
embedding_model="deepset/sentence_bert",
use_gpu=False)
elif retriever_type == "elasticsearch":
retriever = ElasticsearchRetriever(document_store=document_store)
elif retriever_type == "es_filter_only":
retriever = ElasticsearchFilterOnlyRetriever(document_store=document_store)
else:
raise Exception(f"No retriever fixture for '{retriever_type}'")
return retriever