haystack/tutorials/Tutorial15_TableQA.py
Julian Risch 3c81103db7
Remove logging config from Haystack (#2848)
* move logging config from haystack lib to application

* Update Documentation & Code Style

* config logging before importing haystack

* Update Documentation & Code Style

* add logging config to all tutorials

* Update Documentation & Code Style

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-07-25 17:57:30 +02:00

211 lines
9.5 KiB
Python

import logging
# We configure how logging messages should be displayed and which log level should be used before importing Haystack.
# Example log message:
# INFO - haystack.utils.preprocessing - Converting data/tutorial1/218_Olenna_Tyrell.txt
# Default log level in basicConfig is WARNING so the explicit parameter is not necessary but can be changed easily:
logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
logging.getLogger("haystack").setLevel(logging.INFO)
import os
import json
import time
import pandas as pd
from haystack import Label, MultiLabel, Answer
from haystack.utils import launch_es, fetch_archive_from_http, print_answers
from haystack.document_stores import ElasticsearchDocumentStore
from haystack import Document, Pipeline
from haystack.nodes.retriever import EmbeddingRetriever
from haystack.nodes import TableReader, FARMReader, RouteDocuments, JoinAnswers, ParsrConverter
def tutorial15_tableqa():
# Recommended: Start Elasticsearch using Docker via the Haystack utility function
launch_es()
## Connect to Elasticsearch
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document")
## Add Tables to DocumentStore
# Let's first fetch some tables that we want to query
# Here: 1000 tables + texts
doc_dir = "data/tutorial15"
s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/table_text_dataset.zip"
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
# Add the tables to the DocumentStore
def read_tables(filename):
processed_tables = []
with open(filename) as tables:
tables = json.load(tables)
for key, table in tables.items():
current_columns = table["header"]
current_rows = table["data"]
current_df = pd.DataFrame(columns=current_columns, data=current_rows)
document = Document(content=current_df, content_type="table", id=key)
processed_tables.append(document)
return processed_tables
tables = read_tables(f"{doc_dir}/tables.json")
document_store.write_documents(tables, index="document")
### Retriever
# Retrievers help narrowing down the scope for the Reader to a subset of tables where a given question could be answered.
# They use some simple but fast algorithm.
#
# **Here:** We use the EmbeddingRetriever capable of retrieving relevant content among a database
# of texts and tables using dense embeddings.
retriever = EmbeddingRetriever(document_store=document_store, embedding_model="deepset/all-mpnet-base-v2-table")
# Add table embeddings to the tables in DocumentStore
document_store.update_embeddings(retriever=retriever)
## Alternative: BM25Retriever
# from haystack.nodes.retriever import BM25Retriever
# retriever = BM25Retriever(document_store=document_store)
# Try the Retriever
from haystack.utils import print_documents
retrieved_tables = retriever.retrieve("Who won the Super Bowl?", top_k=5)
# Get highest scored table
print(retrieved_tables[0].content)
### Reader
# The TableReader is based on TaPas, a transformer-based language model capable of grasping the two-dimensional structure of a table.
# It scans the tables returned by the retriever and extracts the anser.
# The available TableReader models can be found [here](https://huggingface.co/models?pipeline_tag=table-question-answering&sort=downloads).
#
# **Notice**: The TableReader will return an answer for each table, even if the query cannot be answered by the table.
# Furthermore, the confidence scores are not useful as of now, given that they will *always* be very high (i.e. 1 or close to 1).
reader = TableReader(model_name_or_path="google/tapas-base-finetuned-wtq", max_seq_len=512)
# Try the TableReader on one Table
table_doc = document_store.get_document_by_id("36964e90-3735-4ba1-8e6a-bec236e88bb2")
print(table_doc.content)
prediction = reader.predict(query="Who played Gregory House in the series House?", documents=[table_doc])
print_answers(prediction, details="minimum")
### Pipeline
# The Retriever and the Reader can be sticked together to a pipeline in order to first retrieve relevant tables
# and then extract the answer.
#
# **Notice**: Given that the `TableReader` does not provide useful confidence scores and returns an answer
# for each of the tables, the sorting of the answers might be not helpful.
table_qa_pipeline = Pipeline()
table_qa_pipeline.add_node(component=retriever, name="EmbeddingRetriever", inputs=["Query"])
table_qa_pipeline.add_node(component=reader, name="TableReader", inputs=["EmbeddingRetriever"])
prediction = table_qa_pipeline.run("When was Guilty Gear Xrd : Sign released?")
print_answers(prediction, details="minimum")
### Pipeline for QA on Combination of Text and Tables
# We are using one node for retrieving both texts and tables, the EmbeddingRetriever.
# In order to do question-answering on the Documents coming from the EmbeddingRetriever, we need to route
# Documents of type "text" to a FARMReader ( or alternatively TransformersReader) and Documents of type
# "table" to a TableReader.
text_reader = FARMReader("deepset/roberta-base-squad2")
# In order to get meaningful scores from the TableReader, use "deepset/tapas-large-nq-hn-reader" or
# "deepset/tapas-large-nq-reader" as TableReader models. The disadvantage of these models is, however,
# that they are not capable of doing aggregations over multiple table cells.
table_reader = TableReader("deepset/tapas-large-nq-hn-reader")
route_documents = RouteDocuments()
join_answers = JoinAnswers()
text_table_qa_pipeline = Pipeline()
text_table_qa_pipeline.add_node(component=retriever, name="EmbeddingRetriever", inputs=["Query"])
text_table_qa_pipeline.add_node(component=route_documents, name="RouteDocuments", inputs=["EmbeddingRetriever"])
text_table_qa_pipeline.add_node(component=text_reader, name="TextReader", inputs=["RouteDocuments.output_1"])
text_table_qa_pipeline.add_node(component=table_reader, name="TableReader", inputs=["RouteDocuments.output_2"])
text_table_qa_pipeline.add_node(component=join_answers, name="JoinAnswers", inputs=["TextReader", "TableReader"])
# Add texts to the document store
def read_texts(filename):
processed_passages = []
with open(filename) as passages:
passages = json.load(passages)
for key, content in passages.items():
document = Document(content=content, content_type="text", id=key)
processed_passages.append(document)
return processed_passages
passages = read_texts(f"{doc_dir}/texts.json")
document_store.write_documents(passages)
document_store.update_embeddings(retriever=retriever, update_existing_embeddings=False)
# Example query whose answer resides in a text passage
predictions = text_table_qa_pipeline.run(query="Which country does the film Macaroni come from?")
# We can see both text passages and tables as contexts of the predicted answers.
print_answers(predictions, details="minimum")
# Example query whose answer resides in a table
predictions = text_table_qa_pipeline.run(query="Who was Thomas Alva Edison?")
# We can see both text passages and tables as contexts of the predicted answers.
print_answers(predictions, details="minimum")
### Evaluation
# To evaluate our pipeline, we can use haystack's evaluation feature. We just need to convert our labels into `MultiLabel` objects and the `eval` method will do the rest.
def read_labels(filename, tables):
processed_labels = []
with open(filename) as labels:
labels = json.load(labels)
for table in tables:
if table.id not in labels:
continue
label = labels[table.id]
label = Label(
query=label["query"],
document=table,
is_correct_answer=True,
is_correct_document=True,
answer=Answer(answer=label["answer"]),
origin="gold-label",
)
processed_labels.append(MultiLabel(labels=[label]))
return processed_labels
table_labels = read_labels(f"{doc_dir}/labels.json", tables)
passage_labels = read_labels(f"{doc_dir}/labels.json", passages)
eval_results = text_table_qa_pipeline.eval(table_labels + passage_labels, params={"top_k": 10})
# Calculating and printing the evaluation metrics
print(eval_results.calculate_metrics())
## Adding tables from PDFs
# It can sometimes be hard to provide your data in form of a pandas DataFrame.
# For this case, we provide the `ParsrConverter` wrapper that can help you to convert, for example, a PDF file into a document that you can index.
os.system("docker run -d -p 3001:3001 axarev/parsr")
time.sleep(30)
os.system("wget https://www.w3.org/WAI/WCAG21/working-examples/pdf-table/table.pdf")
converter = ParsrConverter()
docs = converter.convert("table.pdf")
tables = [doc for doc in docs if doc.content_type == "table"]
print(tables)
if __name__ == "__main__":
tutorial15_tableqa()
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/