haystack/tutorials/Tutorial9_DPR_training.py
Julian Risch 3c81103db7
Remove logging config from Haystack (#2848)
* move logging config from haystack lib to application

* Update Documentation & Code Style

* config logging before importing haystack

* Update Documentation & Code Style

* add logging config to all tutorials

* Update Documentation & Code Style

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2022-07-25 17:57:30 +02:00

97 lines
3.1 KiB
Python

# Training Your Own "Dense Passage Retrieval" Model
# Here are some imports that we'll need
import logging
# We configure how logging messages should be displayed and which log level should be used before importing Haystack.
# Example log message:
# INFO - haystack.utils.preprocessing - Converting data/tutorial1/218_Olenna_Tyrell.txt
# Default log level in basicConfig is WARNING so the explicit parameter is not necessary but can be changed easily:
logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
logging.getLogger("haystack").setLevel(logging.INFO)
from haystack.nodes import DensePassageRetriever
from haystack.utils import fetch_archive_from_http
from haystack.document_stores import InMemoryDocumentStore
def tutorial9_dpr_training():
# Download original DPR data
# WARNING: the train set is 7.4GB and the dev set is 800MB
doc_dir = "data/tutorial9"
s3_url_train = "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-train.json.gz"
s3_url_dev = "https://dl.fbaipublicfiles.com/dpr/data/retriever/biencoder-nq-dev.json.gz"
fetch_archive_from_http(s3_url_train, output_dir=doc_dir + "/train")
fetch_archive_from_http(s3_url_dev, output_dir=doc_dir + "/dev")
## Option 1: Training DPR from Scratch
# Here are the variables to specify our training data, the models that we use to initialize DPR
# and the directory where we'll be saving the model
train_filename = "train/biencoder-nq-train.json"
dev_filename = "dev/biencoder-nq-dev.json"
query_model = "bert-base-uncased"
passage_model = "bert-base-uncased"
save_dir = "../saved_models/dpr"
# ## Option 2: Finetuning DPR
#
# # Here are the variables you might want to use instead of the set above
# # in order to perform pretraining
#
# doc_dir = "PATH_TO_YOUR_DATA_DIR"
# train_filename = "TRAIN_FILENAME"
# dev_filename = "DEV_FILENAME"
#
# query_model = "facebook/dpr-question_encoder-single-nq-base"
# passage_model = "facebook/dpr-ctx_encoder-single-nq-base"
#
# save_dir = "..saved_models/dpr"
## Initialize DPR model
retriever = DensePassageRetriever(
document_store=InMemoryDocumentStore(),
query_embedding_model=query_model,
passage_embedding_model=passage_model,
max_seq_len_query=64,
max_seq_len_passage=256,
)
# Start training our model and save it when it is finished
retriever.train(
data_dir=doc_dir,
train_filename=train_filename,
dev_filename=dev_filename,
test_filename=dev_filename,
n_epochs=1,
batch_size=16,
grad_acc_steps=8,
save_dir=save_dir,
evaluate_every=3000,
embed_title=True,
num_positives=1,
num_hard_negatives=1,
)
## Loading
reloaded_retriever = DensePassageRetriever.load(load_dir=save_dir, document_store=None)
if __name__ == "__main__":
tutorial9_dpr_training()
# This Haystack script was made with love by deepset in Berlin, Germany
# Haystack: https://github.com/deepset-ai/haystack
# deepset: https://deepset.ai/