mirror of
https://github.com/Cinnamon/kotaemon.git
synced 2025-06-26 23:19:56 +00:00
feat: add MiniRAG support
This commit is contained in:
parent
f5b2200ffa
commit
2898086f41
@ -318,6 +318,7 @@ SETTINGS_REASONING = {
|
||||
}
|
||||
|
||||
USE_NANO_GRAPHRAG = config("USE_NANO_GRAPHRAG", default=False, cast=bool)
|
||||
USE_MINIRAG = config("USE_MINIRAG", default=False, cast=bool)
|
||||
USE_LIGHTRAG = config("USE_LIGHTRAG", default=True, cast=bool)
|
||||
USE_MS_GRAPHRAG = config("USE_MS_GRAPHRAG", default=True, cast=bool)
|
||||
|
||||
@ -329,6 +330,8 @@ if USE_NANO_GRAPHRAG:
|
||||
GRAPHRAG_INDEX_TYPES.append("ktem.index.file.graph.NanoGraphRAGIndex")
|
||||
if USE_LIGHTRAG:
|
||||
GRAPHRAG_INDEX_TYPES.append("ktem.index.file.graph.LightRAGIndex")
|
||||
if USE_MINIRAG:
|
||||
GRAPHRAG_INDEX_TYPES.append("ktem.index.file.graph.MiniRAGIndex")
|
||||
|
||||
KH_INDEX_TYPES = [
|
||||
"ktem.index.file.FileIndex",
|
||||
|
@ -1,5 +1,6 @@
|
||||
from .graph_index import GraphRAGIndex
|
||||
from .light_graph_index import LightRAGIndex
|
||||
from .mini_graph_index import MiniRAGIndex
|
||||
from .nano_graph_index import NanoGraphRAGIndex
|
||||
|
||||
__all__ = ["GraphRAGIndex", "NanoGraphRAGIndex", "LightRAGIndex"]
|
||||
__all__ = ["GraphRAGIndex", "NanoGraphRAGIndex", "LightRAGIndex", "MiniRAGIndex"]
|
||||
|
44
libs/ktem/ktem/index/file/graph/mini_graph_index.py
Normal file
44
libs/ktem/ktem/index/file/graph/mini_graph_index.py
Normal file
@ -0,0 +1,44 @@
|
||||
from typing import Any
|
||||
|
||||
from ..base import BaseFileIndexIndexing, BaseFileIndexRetriever
|
||||
from .graph_index import GraphRAGIndex
|
||||
from .minirag_pipelines import MiniRAGIndexingPipeline, MiniRAGRetrieverPipeline
|
||||
|
||||
|
||||
class MiniRAGIndex(GraphRAGIndex):
|
||||
def _setup_indexing_cls(self):
|
||||
self._indexing_pipeline_cls = MiniRAGIndexingPipeline
|
||||
|
||||
def _setup_retriever_cls(self):
|
||||
self._retriever_pipeline_cls = [MiniRAGRetrieverPipeline]
|
||||
|
||||
def get_indexing_pipeline(self, settings, user_id) -> BaseFileIndexIndexing:
|
||||
pipeline = super().get_indexing_pipeline(settings, user_id)
|
||||
# indexing settings
|
||||
prefix = f"index.options.{self.id}."
|
||||
striped_settings = {
|
||||
key[len(prefix) :]: value
|
||||
for key, value in settings.items()
|
||||
if key.startswith(prefix)
|
||||
}
|
||||
# set the prompts
|
||||
pipeline.prompts = striped_settings
|
||||
return pipeline
|
||||
|
||||
def get_retriever_pipelines(
|
||||
self, settings: dict, user_id: int, selected: Any = None
|
||||
) -> list["BaseFileIndexRetriever"]:
|
||||
_, file_ids, _ = selected
|
||||
# retrieval settings
|
||||
prefix = f"index.options.{self.id}."
|
||||
search_type = settings.get(prefix + "search_type", "local")
|
||||
|
||||
retrievers = [
|
||||
MiniRAGRetrieverPipeline(
|
||||
file_ids=file_ids,
|
||||
Index=self._resources["Index"],
|
||||
search_type=search_type,
|
||||
)
|
||||
]
|
||||
|
||||
return retrievers
|
340
libs/ktem/ktem/index/file/graph/minirag_pipelines.py
Normal file
340
libs/ktem/ktem/index/file/graph/minirag_pipelines.py
Normal file
@ -0,0 +1,340 @@
|
||||
import glob
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Generator
|
||||
|
||||
import numpy as np
|
||||
from ktem.db.models import engine
|
||||
from ktem.embeddings.manager import embedding_models_manager as embeddings
|
||||
from ktem.llms.manager import llms
|
||||
from sqlalchemy.orm import Session
|
||||
from tenacity import (
|
||||
retry,
|
||||
retry_if_exception_type,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
)
|
||||
from theflow.settings import settings
|
||||
|
||||
from kotaemon.base import Document, Param, RetrievedDocument
|
||||
from kotaemon.base.schema import AIMessage, HumanMessage, SystemMessage
|
||||
|
||||
from ..pipelines import BaseFileIndexRetriever
|
||||
from .pipelines import GraphRAGIndexingPipeline
|
||||
|
||||
try:
|
||||
from minirag import MiniRAG, QueryParam
|
||||
from minirag.utils import EmbeddingFunc, compute_args_hash
|
||||
|
||||
except ImportError:
|
||||
print(
|
||||
(
|
||||
"MiniRAG dependencies not installed. "
|
||||
"Try `pip install git+https://github.com/HKUDS/MiniRAG.git` to install. "
|
||||
"MiniRAG retriever pipeline will not work properly."
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
logging.getLogger("minirag").setLevel(logging.INFO)
|
||||
|
||||
|
||||
filestorage_path = Path(settings.KH_FILESTORAGE_PATH) / "minirag"
|
||||
filestorage_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
INDEX_BATCHSIZE = 4
|
||||
|
||||
|
||||
def get_llm_func(model):
|
||||
@retry(
|
||||
stop=stop_after_attempt(3),
|
||||
wait=wait_exponential(multiplier=1, min=4, max=10),
|
||||
retry=retry_if_exception_type((Exception,)),
|
||||
after=lambda retry_state: logging.warning(
|
||||
f"LLM API call attempt {retry_state.attempt_number} failed. Retrying..."
|
||||
),
|
||||
)
|
||||
async def _call_model(model, input_messages):
|
||||
return (await model.ainvoke(input_messages)).text
|
||||
|
||||
async def llm_func(
|
||||
prompt, system_prompt=None, history_messages=[], **kwargs
|
||||
) -> str:
|
||||
input_messages = [SystemMessage(text=system_prompt)] if system_prompt else []
|
||||
|
||||
hashing_kv = kwargs.pop("hashing_kv", None)
|
||||
if history_messages:
|
||||
for msg in history_messages:
|
||||
if msg.get("role") == "user":
|
||||
input_messages.append(HumanMessage(text=msg["content"]))
|
||||
else:
|
||||
input_messages.append(AIMessage(text=msg["content"]))
|
||||
|
||||
input_messages.append(HumanMessage(text=prompt))
|
||||
|
||||
if hashing_kv is not None:
|
||||
args_hash = compute_args_hash("model", input_messages)
|
||||
if_cache_return = await hashing_kv.get_by_id(args_hash)
|
||||
if if_cache_return is not None:
|
||||
return if_cache_return["return"]
|
||||
|
||||
print("-" * 50)
|
||||
print(prompt, "\n", "-" * 50)
|
||||
|
||||
try:
|
||||
output = await _call_model(model, input_messages)
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to call LLM API after 3 retries: {str(e)}")
|
||||
raise
|
||||
|
||||
print("-" * 50)
|
||||
print(prompt, "\n", "-" * 50)
|
||||
print(output, "\n", "-" * 50)
|
||||
|
||||
if hashing_kv is not None:
|
||||
await hashing_kv.upsert({args_hash: {"return": output, "model": "model"}})
|
||||
|
||||
return output
|
||||
|
||||
return llm_func
|
||||
|
||||
|
||||
def get_embedding_func(model):
|
||||
async def embedding_func(texts: list[str]) -> np.ndarray:
|
||||
outputs = model(texts)
|
||||
embedding_outputs = np.array([doc.embedding for doc in outputs])
|
||||
|
||||
return embedding_outputs
|
||||
|
||||
return embedding_func
|
||||
|
||||
|
||||
def get_default_models_wrapper():
|
||||
# setup model functions
|
||||
default_embedding = embeddings.get_default()
|
||||
default_embedding_dim = len(default_embedding(["Hi"])[0].embedding)
|
||||
embedding_func = EmbeddingFunc(
|
||||
embedding_dim=default_embedding_dim,
|
||||
max_token_size=8192,
|
||||
func=get_embedding_func(default_embedding),
|
||||
)
|
||||
print("GraphRAG embedding dim", default_embedding_dim)
|
||||
|
||||
default_llm = llms.get_default()
|
||||
llm_func = get_llm_func(default_llm)
|
||||
|
||||
return llm_func, embedding_func, default_llm, default_embedding
|
||||
|
||||
|
||||
def prepare_graph_index_path(graph_id: str):
|
||||
root_path = Path(filestorage_path) / graph_id
|
||||
input_path = root_path / "input"
|
||||
|
||||
return root_path, input_path
|
||||
|
||||
|
||||
def build_graphrag(working_dir, llm_func, embedding_func):
|
||||
graphrag_func = MiniRAG(
|
||||
working_dir=working_dir,
|
||||
llm_model_func=llm_func,
|
||||
llm_model_max_token_size=2048,
|
||||
embedding_func=embedding_func,
|
||||
)
|
||||
return graphrag_func
|
||||
|
||||
|
||||
class MiniRAGIndexingPipeline(GraphRAGIndexingPipeline):
|
||||
"""GraphRAG specific indexing pipeline"""
|
||||
|
||||
prompts: dict[str, str] = {}
|
||||
|
||||
@classmethod
|
||||
def get_user_settings(cls) -> dict:
|
||||
try:
|
||||
from minirag.prompt import PROMPTS
|
||||
|
||||
blacklist_keywords = ["default", "response", "process"]
|
||||
return {
|
||||
prompt_name: {
|
||||
"name": f"Prompt for '{prompt_name}'",
|
||||
"value": content,
|
||||
"component": "text",
|
||||
}
|
||||
for prompt_name, content in PROMPTS.items()
|
||||
if all(
|
||||
keyword not in prompt_name.lower() for keyword in blacklist_keywords
|
||||
)
|
||||
and isinstance(content, str)
|
||||
}
|
||||
except ImportError as e:
|
||||
print(e)
|
||||
return {}
|
||||
|
||||
def call_graphrag_index(self, graph_id: str, docs: list[Document]):
|
||||
from minirag.prompt import PROMPTS
|
||||
|
||||
# modify the prompt if it is set in the settings
|
||||
for prompt_name, content in self.prompts.items():
|
||||
if prompt_name in PROMPTS:
|
||||
PROMPTS[prompt_name] = content
|
||||
|
||||
_, input_path = prepare_graph_index_path(graph_id)
|
||||
input_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
(
|
||||
llm_func,
|
||||
embedding_func,
|
||||
default_llm,
|
||||
default_embedding,
|
||||
) = get_default_models_wrapper()
|
||||
print(
|
||||
f"Indexing GraphRAG with LLM {default_llm} "
|
||||
f"and Embedding {default_embedding}..."
|
||||
)
|
||||
|
||||
all_docs = [
|
||||
doc.text
|
||||
for doc in docs
|
||||
if doc.metadata.get("type", "text") == "text" and len(doc.text.strip()) > 0
|
||||
]
|
||||
|
||||
yield Document(
|
||||
channel="debug",
|
||||
text="[GraphRAG] Creating index... This can take a long time.",
|
||||
)
|
||||
|
||||
# remove all .json files in the input_path directory (previous cache)
|
||||
json_files = glob.glob(f"{input_path}/*.json")
|
||||
for json_file in json_files:
|
||||
os.remove(json_file)
|
||||
|
||||
# indexing
|
||||
graphrag_func = build_graphrag(
|
||||
input_path,
|
||||
llm_func=llm_func,
|
||||
embedding_func=embedding_func,
|
||||
)
|
||||
# output must be contain: Loaded graph from
|
||||
# ..input/graph_chunk_entity_relation.graphml with xxx nodes, xxx edges
|
||||
total_docs = len(all_docs)
|
||||
process_doc_count = 0
|
||||
yield Document(
|
||||
channel="debug",
|
||||
text=f"[GraphRAG] Indexed {process_doc_count} / {total_docs} documents.",
|
||||
)
|
||||
|
||||
for doc_id in range(0, len(all_docs), INDEX_BATCHSIZE):
|
||||
cur_docs = all_docs[doc_id : doc_id + INDEX_BATCHSIZE]
|
||||
combined_doc = "\n".join(cur_docs)
|
||||
|
||||
graphrag_func.insert(combined_doc)
|
||||
process_doc_count += len(cur_docs)
|
||||
yield Document(
|
||||
channel="debug",
|
||||
text=(
|
||||
f"[GraphRAG] Indexed {process_doc_count} "
|
||||
f"/ {total_docs} documents."
|
||||
),
|
||||
)
|
||||
|
||||
yield Document(
|
||||
channel="debug",
|
||||
text="[GraphRAG] Indexing finished.",
|
||||
)
|
||||
|
||||
def stream(
|
||||
self, file_paths: str | Path | list[str | Path], reindex: bool = False, **kwargs
|
||||
) -> Generator[
|
||||
Document, None, tuple[list[str | None], list[str | None], list[Document]]
|
||||
]:
|
||||
file_ids, errors, all_docs = yield from super().stream(
|
||||
file_paths, reindex=reindex, **kwargs
|
||||
)
|
||||
|
||||
return file_ids, errors, all_docs
|
||||
|
||||
|
||||
class MiniRAGRetrieverPipeline(BaseFileIndexRetriever):
|
||||
"""GraphRAG specific retriever pipeline"""
|
||||
|
||||
Index = Param(help="The SQLAlchemy Index table")
|
||||
file_ids: list[str] = []
|
||||
search_type: str = "mini"
|
||||
|
||||
@classmethod
|
||||
def get_user_settings(cls) -> dict:
|
||||
return {
|
||||
"search_type": {
|
||||
"name": "Search type",
|
||||
"value": "mini",
|
||||
"choices": ["mini", "light"],
|
||||
"component": "dropdown",
|
||||
"info": "Search type in the graph.",
|
||||
}
|
||||
}
|
||||
|
||||
def _build_graph_search(self):
|
||||
file_id = self.file_ids[0]
|
||||
|
||||
# retrieve the graph_id from the index
|
||||
with Session(engine) as session:
|
||||
graph_id = (
|
||||
session.query(self.Index.target_id)
|
||||
.filter(self.Index.source_id == file_id)
|
||||
.filter(self.Index.relation_type == "graph")
|
||||
.first()
|
||||
)
|
||||
graph_id = graph_id[0] if graph_id else None
|
||||
assert graph_id, f"GraphRAG index not found for file_id: {file_id}"
|
||||
|
||||
_, input_path = prepare_graph_index_path(graph_id)
|
||||
input_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
llm_func, embedding_func, _, _ = get_default_models_wrapper()
|
||||
graphrag_func = build_graphrag(
|
||||
input_path,
|
||||
llm_func=llm_func,
|
||||
embedding_func=embedding_func,
|
||||
)
|
||||
print("search_type", self.search_type)
|
||||
query_params = QueryParam(mode=self.search_type, only_need_context=True)
|
||||
|
||||
return graphrag_func, query_params
|
||||
|
||||
def _to_document(self, header: str, context_text: str) -> RetrievedDocument:
|
||||
return RetrievedDocument(
|
||||
text=context_text,
|
||||
metadata={
|
||||
"file_name": header,
|
||||
"type": "table",
|
||||
"llm_trulens_score": 1.0,
|
||||
},
|
||||
score=1.0,
|
||||
)
|
||||
|
||||
def run(
|
||||
self,
|
||||
text: str,
|
||||
) -> list[RetrievedDocument]:
|
||||
if not self.file_ids:
|
||||
return []
|
||||
|
||||
graphrag_func, query_params = self._build_graph_search()
|
||||
|
||||
# only support non-graph visualization for now
|
||||
context = graphrag_func.query(text, query_params)
|
||||
|
||||
documents = [
|
||||
RetrievedDocument(
|
||||
text=context,
|
||||
metadata={
|
||||
"file_name": "GraphRAG {} Search".format(
|
||||
query_params.mode.capitalize()
|
||||
),
|
||||
"type": "table",
|
||||
},
|
||||
)
|
||||
]
|
||||
|
||||
return documents
|
Loading…
x
Reference in New Issue
Block a user