98 lines
3.0 KiB
Python
Raw Normal View History

"""Read Microsoft PowerPoint files."""
2023-02-01 17:35:33 -08:00
import os
from pathlib import Path
2023-02-03 23:38:12 -08:00
from typing import Dict, List, Optional
2023-02-01 17:35:33 -08:00
from gpt_index.readers.base import BaseReader
from gpt_index.readers.schema.base import Document
2023-02-01 17:35:33 -08:00
class PptxReader(BaseReader):
"""Powerpoint reader.
2023-02-01 17:35:33 -08:00
Extract text, caption images, and specify slides.
"""
def __init__(self) -> None:
"""Init reader."""
2023-02-03 20:41:20 -08:00
from transformers import (
AutoTokenizer,
VisionEncoderDecoderModel,
ViTFeatureExtractor,
)
2023-02-01 17:35:33 -08:00
model = VisionEncoderDecoderModel.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
feature_extractor = ViTFeatureExtractor.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
tokenizer = AutoTokenizer.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
self.parser_config = {
2023-02-01 17:35:33 -08:00
"feature_extractor": feature_extractor,
"model": model,
"tokenizer": tokenizer,
}
def caption_image(self, tmp_image_file: str) -> str:
"""Generate text caption of image."""
import torch
from PIL import Image
model = self.parser_config["model"]
feature_extractor = self.parser_config["feature_extractor"]
tokenizer = self.parser_config["tokenizer"]
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
i_image = Image.open(tmp_image_file)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
pixel_values = feature_extractor(
images=[i_image], return_tensors="pt"
).pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
return preds[0].strip()
def load_data(
self, file: Path, extra_info: Optional[Dict] = None
) -> List[Document]:
2023-02-01 17:35:33 -08:00
"""Parse file."""
from pptx import Presentation
presentation = Presentation(file)
result = ""
for i, slide in enumerate(presentation.slides):
result += f"\n\nSlide #{i}: \n"
for shape in slide.shapes:
if hasattr(shape, "image"):
image = shape.image
# get image "file" contents
image_bytes = image.blob
# temporarily save the image to feed into model
image_filename = f"tmp_image.{image.ext}"
with open(image_filename, "wb") as f:
f.write(image_bytes)
result += f"\n Image: {self.caption_image(image_filename)}\n\n"
os.remove(image_filename)
if hasattr(shape, "text"):
result += f"{shape.text}\n"
return [Document(result, extra_info=extra_info)]