2023-02-03 20:12:03 -08:00
|
|
|
"""Image Reader.
|
|
|
|
|
|
|
|
A parser for image files.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
import re
|
|
|
|
from pathlib import Path
|
2023-05-16 23:26:33 -04:00
|
|
|
from typing import Dict, Optional, cast, List
|
2023-02-03 20:12:03 -08:00
|
|
|
|
2023-02-20 21:46:58 -08:00
|
|
|
from llama_index.readers.base import BaseReader
|
2023-05-16 23:26:33 -04:00
|
|
|
from llama_index.readers.schema.base import Document, ImageDocument
|
2023-02-03 20:12:03 -08:00
|
|
|
|
|
|
|
|
|
|
|
class ImageReader(BaseReader):
|
|
|
|
"""Image parser.
|
|
|
|
|
|
|
|
Extract text from images using DONUT.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
2023-03-14 23:13:43 -07:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
text_type: str = "text",
|
|
|
|
parser_config: Optional[Dict] = None,
|
|
|
|
keep_image: bool = False,
|
|
|
|
parse_text: bool = True,
|
|
|
|
):
|
2023-02-03 20:12:03 -08:00
|
|
|
"""Init parser."""
|
2023-03-14 23:13:43 -07:00
|
|
|
self._text_type = text_type
|
|
|
|
if parser_config is None and parse_text:
|
|
|
|
if text_type == "plain_text":
|
|
|
|
import pytesseract
|
|
|
|
|
|
|
|
processor = None
|
|
|
|
model = pytesseract
|
|
|
|
else:
|
|
|
|
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
2023-05-16 23:26:33 -04:00
|
|
|
|
2023-03-14 23:13:43 -07:00
|
|
|
processor = DonutProcessor.from_pretrained(
|
|
|
|
"naver-clova-ix/donut-base-finetuned-cord-v2"
|
|
|
|
)
|
|
|
|
model = VisionEncoderDecoderModel.from_pretrained(
|
|
|
|
"naver-clova-ix/donut-base-finetuned-cord-v2"
|
|
|
|
)
|
|
|
|
parser_config = {"processor": processor, "model": model}
|
|
|
|
self._parser_config = parser_config
|
|
|
|
self._keep_image = keep_image
|
|
|
|
self._parse_text = parse_text
|
2023-02-18 08:48:00 +05:30
|
|
|
|
2023-02-03 20:12:03 -08:00
|
|
|
def load_data(
|
|
|
|
self, file: Path, extra_info: Optional[Dict] = None
|
2023-05-16 23:26:33 -04:00
|
|
|
) -> List[Document]:
|
2023-02-03 20:12:03 -08:00
|
|
|
"""Parse file."""
|
2023-02-18 08:48:00 +05:30
|
|
|
from PIL import Image
|
2023-02-17 19:28:21 -08:00
|
|
|
|
2023-03-14 23:13:43 -07:00
|
|
|
from llama_index.img_utils import img_2_b64
|
|
|
|
|
|
|
|
# load document image
|
|
|
|
image = Image.open(file)
|
|
|
|
if image.mode != "RGB":
|
|
|
|
image = image.convert("RGB")
|
|
|
|
|
|
|
|
# Encode image into base64 string and keep in document
|
|
|
|
image_str: Optional[str] = None
|
|
|
|
if self._keep_image:
|
|
|
|
image_str = img_2_b64(image)
|
|
|
|
|
|
|
|
# Parse image into text
|
|
|
|
text_str: str = ""
|
|
|
|
if self._parse_text:
|
|
|
|
model = self._parser_config["model"]
|
|
|
|
processor = self._parser_config["processor"]
|
|
|
|
|
|
|
|
if processor:
|
|
|
|
import torch
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
model.to(device)
|
|
|
|
|
|
|
|
# prepare decoder inputs
|
|
|
|
task_prompt = "<s_cord-v2>"
|
|
|
|
decoder_input_ids = processor.tokenizer(
|
|
|
|
task_prompt, add_special_tokens=False, return_tensors="pt"
|
|
|
|
).input_ids
|
|
|
|
|
|
|
|
pixel_values = processor(image, return_tensors="pt").pixel_values
|
|
|
|
|
|
|
|
outputs = model.generate(
|
|
|
|
pixel_values.to(device),
|
|
|
|
decoder_input_ids=decoder_input_ids.to(device),
|
|
|
|
max_length=model.decoder.config.max_position_embeddings,
|
|
|
|
early_stopping=True,
|
|
|
|
pad_token_id=processor.tokenizer.pad_token_id,
|
|
|
|
eos_token_id=processor.tokenizer.eos_token_id,
|
|
|
|
use_cache=True,
|
|
|
|
num_beams=3,
|
|
|
|
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
|
|
|
return_dict_in_generate=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
sequence = processor.batch_decode(outputs.sequences)[0]
|
|
|
|
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
|
|
|
|
processor.tokenizer.pad_token, ""
|
|
|
|
)
|
|
|
|
# remove first task start token
|
|
|
|
text_str = re.sub(r"<.*?>", "", sequence, count=1).strip()
|
|
|
|
else:
|
|
|
|
import pytesseract
|
2023-05-16 23:26:33 -04:00
|
|
|
|
2023-03-14 23:13:43 -07:00
|
|
|
model = cast(pytesseract, self._parser_config["model"])
|
|
|
|
text_str = model.image_to_string(image)
|
|
|
|
|
2023-05-16 23:26:33 -04:00
|
|
|
return [
|
|
|
|
ImageDocument(
|
|
|
|
text=text_str,
|
|
|
|
image=image_str,
|
|
|
|
)
|
|
|
|
]
|