56 lines
1.4 KiB
Python
Raw Normal View History

2023-02-03 20:12:03 -08:00
"""Audio Transcriber.
A transcriber for the audio of mp3, mp4 files.
"""
from pathlib import Path
from typing import Any, Dict, Optional, List, cast
from gpt_index.readers.base import BaseReader
from gpt_index.readers.schema.base import Document
class AudioTranscriber(BaseReader):
"""Audio parser.
Extract text from transcript of video/audio files using OpenAI Whisper.
"""
def __init__(self, *args: Any, model_version: str = "base", **kwargs: Any) -> None:
"""Init params."""
super().__init__(*args, **kwargs)
self._model_version = model_version
2023-02-03 20:41:20 -08:00
import whisper
2023-02-03 20:12:03 -08:00
model = whisper.load_model(self._model_version)
self.parser_config = {"model": model}
def load_data(
self, file: Path, extra_info: Optional[Dict] = None
) -> List[Document]:
"""Parse file."""
import whisper
if file.name.endswith("mp4"):
2023-02-03 20:41:20 -08:00
from pydub import AudioSegment # noqa: F401
2023-02-03 20:12:03 -08:00
# open file
video = AudioSegment.from_file(file, format="mp4")
# Extract audio from video
audio = video.split_to_mono()[0]
file_str = str(file)[:-4] + ".mp3"
# export file
audio.export(file_str, format="mp3")
model = cast(whisper.Whisper, self.parser_config["model"])
result = model.transcribe(str(file))
transcript = result["text"]
return [Document(transcript, extra_info=extra_info)]