# File Loader This loader takes in a local directory containing files and extracts `Document`s from each of the files. By default, the loader will utilize the specialized loaders in this library to parse common file extensions (e.g. .pdf, .png, .docx, etc). You can optionally pass in your own custom loaders. Note: if no loader is found for a file extension, and the file extension is not in the list to skip, the file will be read directly. ## Usage To use this loader, you simply need to instantiate the `SimpleDirectoryReader` class with a directory, along with other optional settings, such as whether to ignore hidden files. See the code for the complete list. ```python from llama_index import download_loader SimpleDirectoryReader = download_loader("SimpleDirectoryReader") loader = SimpleDirectoryReader('./data', recursive=True, exclude_hidden=True) documents = loader.load_data() ``` ## Examples This loader is designed to be used as a way to load data into [LlamaIndex](https://github.com/jerryjliu/gpt_index/tree/main/gpt_index) and/or subsequently used as a Tool in a [LangChain](https://github.com/hwchase17/langchain) Agent. ### LlamaIndex ```python from llama_index import GPTVectorStoreIndex, download_loader SimpleDirectoryReader = download_loader("SimpleDirectoryReader") loader = SimpleDirectoryReader('./data', recursive=True, exclude_hidden=True) documents = loader.load_data() index = GPTVectorStoreIndex.from_documents(documents) index.query('What are these files about?') ``` ### LangChain Note: Make sure you change the description of the `Tool` to match your use-case. ```python from llama_index import GPTVectorStoreIndex, download_loader from langchain.agents import initialize_agent, Tool from langchain.llms import OpenAI from langchain.chains.conversation.memory import ConversationBufferMemory SimpleDirectoryReader = download_loader("SimpleDirectoryReader") loader = SimpleDirectoryReader('./data', recursive=True, exclude_hidden=True) documents = loader.load_data() index = GPTVectorStoreIndex.from_documents(documents) tools = [ Tool( name="Local Directory Index", func=lambda q: index.query(q), description=f"Useful when you want answer questions about the files in your local directory.", ), ] llm = OpenAI(temperature=0) memory = ConversationBufferMemory(memory_key="chat_history") agent_chain = initialize_agent( tools, llm, agent="zero-shot-react-description", memory=memory ) output = agent_chain.run(input="What are these files about?") ```