"""Image Reader. A parser for image files. """ import re from pathlib import Path from typing import Dict, List, Optional from gpt_index.readers.base import BaseReader from gpt_index.readers.schema.base import Document class ImageReader(BaseReader): """Image parser. Extract text from images using DONUT. """ def __init__(self, text_type: str = "plain_text") -> None: """Init parser.""" if text_type == "plain_text": import pytesseract processor = None model = pytesseract else: try: import torch # noqa: F401 except ImportError: raise ValueError("install pytorch to use the model") try: from transformers import DonutProcessor, VisionEncoderDecoderModel except ImportError: raise ValueError("transformers is required for using DONUT model.") try: import sentencepiece # noqa: F401 except ImportError: raise ValueError("sentencepiece is required for using DONUT model.") try: from PIL import Image # noqa: F401 except ImportError: raise ValueError( "PIL is required to read image files." "Please run `pip install Pillow`" ) processor = DonutProcessor.from_pretrained( "naver-clova-ix/donut-base-finetuned-cord-v2" ) model = VisionEncoderDecoderModel.from_pretrained( "naver-clova-ix/donut-base-finetuned-cord-v2" ) self.parser_config = {"processor": processor, "model": model} def load_data( self, file: Path, extra_info: Optional[Dict] = None ) -> List[Document]: """Parse file.""" from PIL import Image model = self.parser_config["model"] processor = self.parser_config["processor"] if processor: import torch device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # load document image image = Image.open(file) if image.mode != "RGB": image = image.convert("RGB") # prepare decoder inputs task_prompt = "" decoder_input_ids = processor.tokenizer( task_prompt, add_special_tokens=False, return_tensors="pt" ).input_ids pixel_values = processor(image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( processor.tokenizer.pad_token, "" ) # remove first task start token text = re.sub(r"<.*?>", "", sequence, count=1).strip() else: # load document image image = Image.open(file) text = model.image_to_string(image) return [Document(text, extra_info=extra_info)]