mirror of
https://github.com/run-llama/llama-hub.git
synced 2025-12-27 06:59:06 +00:00
1.2 KiB
1.2 KiB
Faiss Loader
The Faiss Loader returns a set of texts corresponding to embeddings retrieved from a Faiss Index. The user initializes the loader with a Faiss index. They then pass in a query vector.
Usage
Here's an example usage of the FaissReader.
from gpt_index import download_loader
import faiss
FaissReader = download_loader('FaissReader')
id_to_text_map = {
"id1": "text blob 1",
"id2": "text blob 2",
}
index = faiss.IndexFlatL2(d)
# add embeddings to the index
index.add(...)
# initalize reader
reader = FaissReader(index)
# To load data from the Faiss index, you must specify:
# k: top nearest neighbors
# query: a 2D embedding representation of your queries (rows are queries)
k = 4
query1 = np.array([...])
query2 = np.array([...])
query=np.array([query1, query2])
documents = reader.load_data(query=query, id_to_text_map=id_to_text_map, k=k)
This loader is designed to be used as a way to load data into GPT Index and/or subsequently used as a Tool in a LangChain Agent. See here for examples.