Jerry Liu e97bb81915
swap out gpt_index imports for llama_index imports (#49)
* cr

* cr

* cr

---------

Co-authored-by: Jerry Liu <jerry@robustintelligence.com>
Co-authored-by: Jesse Zhang <jessetanzhang@gmail.com>
2023-02-20 21:46:58 -08:00

71 lines
2.2 KiB
Python

"""Pandas CSV reader.
A parser for tabular data files using pandas.
"""
from pathlib import Path
from typing import Any, Dict, List, Optional
from llama_index.readers.base import BaseReader
from llama_index.readers.schema.base import Document
class PandasCSVReader(BaseReader):
r"""Pandas-based CSV parser.
Parses CSVs using the separator detection from Pandas `read_csv`function.
If special parameters are required, use the `pandas_config` dict.
Args:
concat_rows (bool): whether to concatenate all rows into one document.
If set to False, a Document will be created for each row.
True by default.
col_joiner (str): Separator to use for joining cols per row.
Set to ", " by default.
row_joiner (str): Separator to use for joining each row.
Only used when `concat_rows=True`.
Set to "\n" by default.
pandas_config (dict): Options for the `pandas.read_csv` function call.
Refer to https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
for more information.
Set to empty dict by default, this means pandas will try to figure
out the separators, table head, etc. on its own.
"""
def __init__(
self,
*args: Any,
concat_rows: bool = True,
col_joiner: str = ", ",
row_joiner: str = "\n",
pandas_config: dict = {},
**kwargs: Any
) -> None:
"""Init params."""
super().__init__(*args, **kwargs)
self._concat_rows = concat_rows
self._col_joiner = col_joiner
self._row_joiner = row_joiner
self._pandas_config = pandas_config
def load_data(
self, file: Path, extra_info: Optional[Dict] = None
) -> List[Document]:
"""Parse file."""
import pandas as pd
df = pd.read_csv(file, **self._pandas_config)
text_list = df.apply(
lambda row: (self._col_joiner).join(row.astype(str).tolist()), axis=1
).tolist()
if self._concat_rows:
return [Document((self._row_joiner).join(text_list), extra_info=extra_info)]
else:
return [Document(text, extra_info=extra_info) for text in text_list]