Jerry Liu e97bb81915
swap out gpt_index imports for llama_index imports (#49)
* cr

* cr

* cr

---------

Co-authored-by: Jerry Liu <jerry@robustintelligence.com>
Co-authored-by: Jesse Zhang <jessetanzhang@gmail.com>
2023-02-20 21:46:58 -08:00

104 lines
3.4 KiB
Python

"""Read Microsoft PowerPoint files."""
import os
from pathlib import Path
from typing import Dict, List, Optional
from llama_index.readers.base import BaseReader
from llama_index.readers.schema.base import Document
class PptxReader(BaseReader):
"""Powerpoint reader.
Extract text, caption images, and specify slides.
"""
def __init__(self, caption_images: Optional[bool] = False) -> None:
"""Init reader."""
self.caption_images = caption_images
if caption_images:
from transformers import (AutoTokenizer, VisionEncoderDecoderModel,
ViTFeatureExtractor)
model = VisionEncoderDecoderModel.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
feature_extractor = ViTFeatureExtractor.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
tokenizer = AutoTokenizer.from_pretrained(
"nlpconnect/vit-gpt2-image-captioning"
)
self.parser_config = {
"feature_extractor": feature_extractor,
"model": model,
"tokenizer": tokenizer,
}
def generate_image_caption(self, tmp_image_file: str) -> str:
"""Generate text caption of image."""
if not self.caption_images:
return ""
import torch
from PIL import Image
model = self.parser_config["model"]
feature_extractor = self.parser_config["feature_extractor"]
tokenizer = self.parser_config["tokenizer"]
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
i_image = Image.open(tmp_image_file)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
pixel_values = feature_extractor(
images=[i_image], return_tensors="pt"
).pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
return preds[0].strip()
def load_data(
self,
file: Path,
extra_info: Optional[Dict] = None,
) -> List[Document]:
"""Parse file."""
from pptx import Presentation
presentation = Presentation(file)
result = ""
for i, slide in enumerate(presentation.slides):
result += f"\n\nSlide #{i}: \n"
for shape in slide.shapes:
if self.caption_images and hasattr(shape, "image"):
image = shape.image
# get image "file" contents
image_bytes = image.blob
# temporarily save the image to feed into model
image_filename = f"tmp_image.{image.ext}"
with open(image_filename, "wb") as f:
f.write(image_bytes)
result += (
f"\n Image: {self.generate_image_caption(image_filename)}\n\n"
)
os.remove(image_filename)
if hasattr(shape, "text"):
result += f"{shape.text}\n"
return [Document(result, extra_info=extra_info)]