mirror of
https://github.com/allenai/olmocr.git
synced 2025-06-27 04:00:02 +00:00
57 lines
1.8 KiB
Python
57 lines
1.8 KiB
Python
![]() |
import unittest
|
||
|
|
||
|
from transformers import AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig
|
||
|
from PIL import Image
|
||
|
import requests
|
||
|
|
||
|
class MolmoProcessorTest(unittest.TestCase):
|
||
|
def test_molmo_demo(self):
|
||
|
# load the processor
|
||
|
processor = AutoProcessor.from_pretrained(
|
||
|
'allenai/Molmo-7B-O-0924',
|
||
|
trust_remote_code=True,
|
||
|
torch_dtype='auto',
|
||
|
)
|
||
|
|
||
|
# load the model
|
||
|
model = AutoModelForCausalLM.from_pretrained(
|
||
|
'allenai/Molmo-7B-O-0924',
|
||
|
trust_remote_code=True,
|
||
|
torch_dtype='auto',
|
||
|
)
|
||
|
|
||
|
device = "cuda:0"
|
||
|
|
||
|
model = model.to(device)
|
||
|
|
||
|
# process the image and text
|
||
|
inputs = processor.process(
|
||
|
images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)],
|
||
|
text="Describe this image."
|
||
|
)
|
||
|
|
||
|
# move inputs to the correct device and make a batch of size 1
|
||
|
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
||
|
|
||
|
print("Raw inputs")
|
||
|
print(inputs)
|
||
|
|
||
|
print("\nShapes")
|
||
|
print({(x, y.shape) for x,y in inputs.items()})
|
||
|
|
||
|
print("\nTokens")
|
||
|
print(processor.tokenizer.batch_decode(inputs["input_ids"]))
|
||
|
|
||
|
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
|
||
|
output = model.generate_from_batch(
|
||
|
inputs,
|
||
|
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
|
||
|
tokenizer=processor.tokenizer
|
||
|
)
|
||
|
|
||
|
# only get generated tokens; decode them to text
|
||
|
generated_tokens = output[0,inputs['input_ids'].size(1):]
|
||
|
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
||
|
|
||
|
# print the generated text
|
||
|
print(generated_text)
|