olmocr/tests/test_molmo.py

64 lines
2.0 KiB
Python
Raw Normal View History

2025-01-22 15:23:08 -08:00
import unittest
import requests
2025-01-29 15:25:10 -08:00
from PIL import Image
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
GenerationConfig,
)
2025-01-22 15:23:08 -08:00
class MolmoProcessorTest(unittest.TestCase):
def test_molmo_demo(self):
# load the processor
processor = AutoProcessor.from_pretrained(
'allenai/Molmo-7B-O-0924',
trust_remote_code=True,
torch_dtype='auto',
)
# load the model
model = AutoModelForCausalLM.from_pretrained(
'allenai/Molmo-7B-O-0924',
trust_remote_code=True,
torch_dtype='auto',
)
device = "cuda:0"
model = model.to(device)
# process the image and text
inputs = processor.process(
images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)],
text="Describe this image."
)
# move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
print("Raw inputs")
print(inputs)
print("\nShapes")
2025-01-23 10:58:43 -08:00
# {('input_ids', torch.Size([1, 589])), ('images', torch.Size([1, 5, 576, 588])), ('image_masks', torch.Size([1, 5, 576])), ('image_input_idx', torch.Size([1, 5, 144]))}
2025-01-22 15:23:08 -08:00
print({(x, y.shape) for x,y in inputs.items()})
print("\nTokens")
print(processor.tokenizer.batch_decode(inputs["input_ids"]))
# generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer
)
# only get generated tokens; decode them to text
generated_tokens = output[0,inputs['input_ids'].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
# print the generated text
print(generated_text)