olmocr/tests/test_birrpipeline.py

127 lines
4.8 KiB
Python
Raw Normal View History

import unittest
from unittest.mock import MagicMock, patch
import hashlib
import json
# Adjust the import path to match where your code resides
from pdelfin.birrpipeline import build_dolma_doc, DatabaseManager
class TestBuildDolmaDoc(unittest.TestCase):
@patch('pdelfin.birrpipeline.DatabaseManager')
@patch('pdelfin.birrpipeline.get_s3_bytes')
def test_build_dolma_doc_with_multiple_page_entries(self, mock_get_s3_bytes, mock_DatabaseManager):
# Mock DatabaseManager instance
mock_db_instance = MagicMock()
mock_DatabaseManager.return_value = mock_db_instance
# Define the PDF record
pdf_s3_path = 's3://bucket/pdf/test.pdf'
pdf = DatabaseManager.PDFRecord(s3_path=pdf_s3_path, num_pages=1, status='pending')
# Create multiple BatchInferenceRecord entries for page_num=1
entry_a = DatabaseManager.BatchInferenceRecord(
inference_s3_path='s3://bucket/inference/output1.jsonl',
pdf_s3_path=pdf_s3_path,
page_num=1,
round=0,
start_index=0,
length=100,
finish_reason='stop',
error=None
)
entry_b = DatabaseManager.BatchInferenceRecord(
inference_s3_path='s3://bucket/inference/output2.jsonl',
pdf_s3_path=pdf_s3_path,
page_num=1,
round=0,
start_index=0,
length=100,
finish_reason='stop',
error=None
)
entry_c = DatabaseManager.BatchInferenceRecord(
inference_s3_path='s3://bucket/inference/output3.jsonl',
pdf_s3_path=pdf_s3_path,
page_num=1,
round=0,
start_index=0,
length=100,
finish_reason='stop',
error=None
)
entry_d = DatabaseManager.BatchInferenceRecord(
inference_s3_path='s3://bucket/inference/output4.jsonl',
pdf_s3_path=pdf_s3_path,
page_num=1,
round=0,
start_index=0,
length=100,
finish_reason='stop',
error=None
)
# Set up mock_db_instance.get_index_entries to return all entries
mock_db_instance.get_index_entries.return_value = [entry_a, entry_b, entry_c, entry_d]
# Define get_s3_bytes side effect function
def get_s3_bytes_side_effect(s3_client, s3_path, start_index=None, end_index=None):
if s3_path == 's3://bucket/inference/output1.jsonl':
data = {
"custom_id": f"{pdf_s3_path}-1",
"outputs": [{"text": "{\"is_rotation_valid\": true, \"natural_text\": \"Short Text\"}"}],
"round": 0
}
elif s3_path == 's3://bucket/inference/output2.jsonl':
data = {
"custom_id": f"{pdf_s3_path}-1",
"outputs": [{"text": "{\"is_rotation_valid\": false, \"natural_text\": \"Very Long Text Here that is longer\"}"}],
"round": 0
}
elif s3_path == 's3://bucket/inference/output3.jsonl':
data = {
"custom_id": f"{pdf_s3_path}-1",
"outputs": [{"text": "{\"is_rotation_valid\": true, \"natural_text\": \"Medium Length Text\"}"}],
"round": 0
}
elif s3_path == 's3://bucket/inference/output4.jsonl':
data = {
"custom_id": f"{pdf_s3_path}-1",
"outputs": [{"text": "{\"is_rotation_valid\": true, \"natural_text\": \"The Longest Correct Text\"}"}],
"round": 0
}
else:
data = {}
line = json.dumps(data) + '\n'
content_bytes = line.encode('utf-8')
return content_bytes
mock_get_s3_bytes.side_effect = get_s3_bytes_side_effect
# Call build_dolma_doc
s3_workspace = 's3://bucket/workspace'
dolma_doc = build_dolma_doc(s3_workspace, pdf)
# Check that the resulting dolma_doc has the expected document_text
expected_text = 'The Longest Correct Text\n'
self.assertIsNotNone(dolma_doc)
self.assertEqual(dolma_doc['text'], expected_text)
# Additional assertions to ensure that the correct page was selected
self.assertEqual(dolma_doc['metadata']['Source-File'], pdf_s3_path)
self.assertEqual(dolma_doc['metadata']['pdf-total-pages'], 1)
self.assertEqual(len(dolma_doc['attributes']['pdf_page_numbers']), 1)
self.assertEqual(dolma_doc['attributes']['pdf_page_numbers'][0][2], 1)
# Ensure that the document ID is correctly computed
expected_id = hashlib.sha1(expected_text.encode()).hexdigest()
self.assertEqual(dolma_doc['id'], expected_id)
# Run the test
if __name__ == '__main__':
unittest.main()