olmocr/scripts/tagging_pipeline.py

636 lines
24 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
"""
Tagging pipeline for Dolma JSONL datasets.
For each .jsonl, .jsonl.gz, or .jsonl.ztd file under the dataset/documents folder,
this script issues a simple SGLang completion per record (e.g., "Is this document in English?"),
collects the yes/no answers, and writes corresponding Dolma attributes JSONL files under
scratch/attributes/, mirroring the input structure.
"""
import argparse
import asyncio
import atexit
2025-04-23 19:56:13 +00:00
import gzip
import json
import logging
import multiprocessing
import os
import random
import re
import shutil
import sys
import tempfile
import time
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
from concurrent.futures.process import BrokenProcessPool
from dataclasses import dataclass
from functools import cache, partial
from io import BytesIO
from urllib.parse import urlparse
2025-04-23 19:56:13 +00:00
import zstandard as zstd
import boto3
import httpx
import torch
from botocore.exceptions import ClientError
from huggingface_hub import snapshot_download
from PIL import Image
from pypdf import PdfReader
from tqdm import tqdm
from olmocr.check import (
check_poppler_version,
check_sglang_version,
check_torch_gpu_available,
)
from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.filter.filter import Language, PdfFilter
from olmocr.image_utils import convert_image_to_pdf_bytes, is_jpeg, is_png
from olmocr.metrics import MetricsKeeper, WorkerTracker
from olmocr.prompts import PageResponse, build_finetuning_prompt
from olmocr.prompts.anchor import get_anchor_text
from olmocr.s3_utils import (
download_directory,
download_zstd_csv,
expand_s3_glob,
get_s3_bytes,
get_s3_bytes_with_backoff,
parse_s3_path,
)
from olmocr.version import VERSION
from olmocr.work_queue import LocalWorkQueue, S3WorkQueue, WorkQueue
# Initialize logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logger.propagate = False
sglang_logger = logging.getLogger("sglang")
sglang_logger.propagate = False
file_handler = logging.FileHandler("olmocr-pipeline-debug.log", mode="a")
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s"))
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s"))
# Add handlers to the logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
sglang_logger.addHandler(file_handler)
# Default port; overridden by --port
SGLANG_SERVER_PORT = 30024
# Global variables for token statistics
metrics = MetricsKeeper(window=60 * 5)
tracker = WorkerTracker()
# Process pool for offloading cpu bound work, like calculating anchor texts, max 32 workers, otherwise it can spawn way too many workers on a big machine
process_pool = ProcessPoolExecutor(max_workers=min(multiprocessing.cpu_count() // 2 + 1, 32), mp_context=multiprocessing.get_context("spawn"))
2025-04-23 19:56:13 +00:00
async def process_dolma_document(dolma_doc):
"""
Send the text to SGLang server to classify PII presence.
Returns tuple (doc_id, contains_pii, text_length).
"""
query = {
"model": "google/gemma-3-4b-it",
"messages": [
{
"role": "user",
"content": [
2025-04-23 19:56:13 +00:00
{
"type": "text",
"text": (
f"{dolma_doc['text']}\n\n-----------\n"
"Given the text above, does it contain any Personally Identifiable Information (PII)? "
"Answer in a single JSON object with a single field named 'contains_pii' that's a bool."
)
}
],
}
],
"temperature": 0.0,
}
2025-04-23 19:56:13 +00:00
async with httpx.AsyncClient() as client:
url = f"http://localhost:{SGLANG_SERVER_PORT}/v1/chat/completions"
resp = await client.post(url, json=query)
resp.raise_for_status()
response_json = resp.json()
# Extract the JSON content from the model's response
content = (
response_json.get('choices', [])[0]
.get('message', {})
.get('content', '')
)
try:
result = json.loads(content)
contains_pii = bool(result.get('contains_pii', False))
except json.JSONDecodeError:
logger.warning(f"Failed to parse JSON from SGLang response: {content}")
contains_pii = False
text_length = len(dolma_doc.get('text', ''))
return dolma_doc.get('id'), contains_pii, text_length
async def process_file(args, worker_id: int, file_uri: str):
"""
2025-04-23 19:56:13 +00:00
Download a JSONL file, query SGLang per record, and collect attributes.
"""
# Fetch raw bytes (S3 or local)
if file_uri.startswith("s3://"):
raw = await asyncio.to_thread(get_s3_bytes_with_backoff, dataset_s3, file_uri)
else:
2025-04-23 19:56:13 +00:00
with open(file_uri, 'rb') as f:
raw = f.read()
# Decompress if needed
if file_uri.endswith('.gz'):
file_bytes = gzip.decompress(raw)
elif file_uri.endswith('.ztd') or file_uri.endswith('.zst') or file_uri.endswith('.zstd'):
dctx = zstd.ZstdDecompressor()
file_bytes = dctx.decompress(raw, max_output_size=1_000_000_000)
else:
file_bytes = raw
2025-04-23 19:56:13 +00:00
lines = file_bytes.decode('utf-8').splitlines()
page_tasks = {}
2025-04-23 19:56:13 +00:00
# Send all records in parallel
async with asyncio.TaskGroup() as tg:
2025-04-23 19:56:13 +00:00
for line in lines:
data = json.loads(line)
2025-04-23 19:56:13 +00:00
task = tg.create_task(process_dolma_document(data))
page_tasks[data['id']] = (task, data)
2025-04-23 19:56:13 +00:00
# Collect results and build attributes
attributes = []
key_name = f"{args.model.replace('/', '_')}_pii_classification"
for doc_id, (task, data) in page_tasks.items():
_, contains_pii, text_length = task.result()
score_or_flag = 1.0 if contains_pii else False
span = [0, text_length, score_or_flag]
attributes.append({
"id": doc_id,
"attributes": { key_name: [span] }
})
2025-04-23 19:56:13 +00:00
return attributes
async def worker(args, work_queue: WorkQueue, semaphore, worker_id):
while True:
await semaphore.acquire()
work_item = await work_queue.get_work()
if work_item is None:
logger.info(f"Worker {worker_id} exiting due to empty queue")
semaphore.release()
break
2025-04-23 19:56:13 +00:00
file_uri = work_item.work_paths[0]
logger.info(f"Worker {worker_id} processing work item {file_uri}")
await tracker.clear_work(worker_id)
try:
2025-04-23 19:56:13 +00:00
attrs = await process_file(args, worker_id, file_uri)
logger.info("Got attrs", attrs)
# Write out attributes JSONL to scratch/attributes/... mirroring input structure
if file_uri.startswith('s3://'):
_, key = parse_s3_path(file_uri)
# assume args.dataset is s3://bucket/prefix
_, docs_prefix = parse_s3_path(args.dataset)
rel_path = key[len(os.path.join(docs_prefix, 'documents/')):]
else:
docs_root = os.path.join(args.dataset, 'documents')
rel_path = os.path.relpath(file_uri, docs_root)
out_rel = os.path.join('attributes', rel_path)
out_jsonl = '\n'.join(json.dumps(x) for x in attrs) + '\n'
if args.scratch.startswith('s3://'):
out_bucket, out_prefix = parse_s3_path(args.scratch)
out_key = os.path.join(out_prefix, out_rel)
workspace_s3.put_object(Bucket=out_bucket, Key=out_key,
Body=out_jsonl.encode('utf-8'))
else:
out_path = os.path.join(args.scratch, out_rel)
os.makedirs(os.path.dirname(out_path), exist_ok=True)
with open(out_path, 'w', encoding='utf-8') as f:
f.write(out_jsonl)
await work_queue.mark_done(work_item)
except Exception as e:
2025-04-23 19:56:13 +00:00
logger.exception(f"Exception occurred while processing work item {work_item.hash}: {e}")
finally:
semaphore.release()
async def sglang_server_task(model_name_or_path, args, semaphore):
# Check GPU memory, lower mem devices need a bit less KV cache space because the VLM takes additional memory
gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3) # Convert to GB
mem_fraction_arg = ["--mem-fraction-static", "0.80"] if gpu_memory < 60 else []
cmd = [
"python3",
"-m",
"sglang.launch_server",
"--model-path",
model_name_or_path,
"--chat-template",
args.model_chat_template,
# "--context-length", str(args.model_max_context), # Commented out due to crashes
"--port",
str(SGLANG_SERVER_PORT),
"--log-level-http",
"warning",
]
cmd.extend(mem_fraction_arg)
proc = await asyncio.create_subprocess_exec(
*cmd,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
)
# Ensure the subprocess is terminated on exit
def _kill_proc():
proc.terminate()
atexit.register(_kill_proc)
# Shared variables between tasks
last_running_req, last_queue_req = 0, 0
server_printed_ready_message = False
last_semaphore_release = time.time()
async def process_line(line):
nonlocal last_running_req, last_queue_req, last_semaphore_release, server_printed_ready_message
sglang_logger.info(line)
# if the server hasn't initialized yet, log all the lines to the main logger also, so that the user
# can see any warnings/errors more easily
if not server_printed_ready_message:
logger.info(line)
if "Detected errors during sampling" in line:
logger.error("Cannot continue, sampling errors detected, model is probably corrupt")
sys.exit(1)
# TODO, need to trace down this issue in sglang itself, but it will otherwise cause the server to lock up
if "IndexError: list index out of range" in line:
logger.error("IndexError in model, restarting server")
proc.terminate()
if not server_printed_ready_message and "The server is fired up and ready to roll!" in line:
server_printed_ready_message = True
last_semaphore_release = time.time()
match = re.search(r"#running-req: (\d+)", line)
if match:
last_running_req = int(match.group(1))
match = re.search(r"#queue-req: (\d+)", line)
if match:
last_queue_req = int(match.group(1))
logger.info(f"sglang running req: {last_running_req} queue req: {last_queue_req}")
async def read_stream(stream):
while True:
line = await stream.readline()
if not line:
break
try:
line = line.decode("utf-8").rstrip()
await process_line(line)
except Exception as ex:
logger.warning(f"Got {ex} when reading log line from inference server, skipping")
async def timeout_task():
nonlocal last_running_req, last_queue_req, last_semaphore_release
try:
while True:
await asyncio.sleep(1)
if server_printed_ready_message and last_queue_req == 0 and time.time() - last_semaphore_release > 30 and semaphore.locked():
semaphore.release()
last_semaphore_release = time.time()
logger.info("Semaphore released, allowing a worker to proceed.")
except asyncio.CancelledError:
pass # Clean up if the task is cancelled
# Start tasks to read stdout, stderr, and handle timeout logic
stdout_task = asyncio.create_task(read_stream(proc.stdout))
stderr_task = asyncio.create_task(read_stream(proc.stderr))
timeout_task = asyncio.create_task(timeout_task())
try:
await proc.wait()
except asyncio.CancelledError:
logger.info("Got cancellation request for SGLang server")
proc.terminate()
raise
timeout_task.cancel()
await asyncio.gather(stdout_task, stderr_task, timeout_task, return_exceptions=True)
async def sglang_server_host(model_name_or_path, args, semaphore):
MAX_RETRIES = 5
retry = 0
while retry < MAX_RETRIES:
await sglang_server_task(model_name_or_path, args, semaphore)
logger.warning("SGLang server task ended")
retry += 1
if retry >= MAX_RETRIES:
logger.error(f"Ended up starting the sglang server more than {retry} times, cancelling pipeline")
logger.error("")
logger.error("Please make sure sglang is installed according to the latest instructions here: https://docs.sglang.ai/start/install.html")
sys.exit(1)
async def sglang_server_ready():
max_attempts = 300
delay_sec = 1
url = f"http://localhost:{SGLANG_SERVER_PORT}/v1/models"
for attempt in range(1, max_attempts + 1):
try:
async with httpx.AsyncClient() as session:
response = await session.get(url)
if response.status_code == 200:
logger.info("sglang server is ready.")
return
else:
logger.info(f"Attempt {attempt}: Unexpected status code {response.status_code}")
except Exception:
logger.warning(f"Attempt {attempt}: Please wait for sglang server to become ready...")
await asyncio.sleep(delay_sec)
raise Exception("sglang server did not become ready after waiting.")
async def download_model(model_name_or_path: str):
if model_name_or_path.startswith("s3://") or model_name_or_path.startswith("gs://") or model_name_or_path.startswith("weka://"):
logger.info(f"Downloading model directory from '{model_name_or_path}'")
model_cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "olmocr", "model")
download_directory([model_name_or_path], model_cache_dir)
return model_cache_dir
elif os.path.isabs(model_name_or_path) and os.path.isdir(model_name_or_path):
logger.info(f"Using local model path at '{model_name_or_path}'")
return model_name_or_path
else:
logger.info(f"Downloading model with hugging face '{model_name_or_path}'")
snapshot_download(repo_id=model_name_or_path)
return model_name_or_path
async def metrics_reporter(work_queue):
while True:
# Leading newlines preserve table formatting in logs
logger.info(f"Queue remaining: {work_queue.size}")
logger.info("\n" + str(metrics))
logger.info("\n" + str(await tracker.get_status_table()))
await asyncio.sleep(10)
def submit_beaker_job(args):
from beaker import ( # type: ignore
Beaker,
Constraints,
EnvVar,
ExperimentSpec,
ImageSource,
Priority,
ResultSpec,
SecretNotFound,
TaskContext,
TaskResources,
TaskSpec,
)
b = Beaker.from_env(default_workspace=args.beaker_workspace)
account = b.account.whoami()
owner = account.name
beaker_image = f"jakep/olmocr-inference-{VERSION}"
task_name = f"olmocr-{os.path.basename(args.dataset.rstrip('/'))}"
# Take out --beaker flag so the workers will just run things
args_list = [arg for arg in sys.argv[1:] if arg != "--beaker"]
# Take out the --pdfs [arg] or --pdfs=[arg], since the queue is populated locally
args_list = [arg for i, arg in enumerate(args_list) if not (arg.startswith("--pdfs") or (i > 0 and args_list[i - 1] == "--pdfs"))]
try:
b.secret.get(f"{owner}-WEKA_ACCESS_KEY_ID", args.beaker_workspace)
b.secret.get(f"{owner}-WEKA_SECRET_ACCESS_KEY", args.beaker_workspace)
b.secret.get(f"{owner}-AWS_CREDENTIALS_FILE", args.beaker_workspace)
except SecretNotFound:
print(
f"Expected beaker secrets for accessing Weka and S3 are not found. Are you okay to write those to your beaker workspace {args.beaker_workspace}? [y/n]"
)
if input().strip().lower() != "y":
print("Exiting...")
sys.exit(1)
b.secret.write(f"{owner}-WEKA_ACCESS_KEY_ID", os.environ.get("WEKA_ACCESS_KEY_ID", ""), args.beaker_workspace)
b.secret.write(f"{owner}-WEKA_SECRET_ACCESS_KEY", os.environ.get("WEKA_SECRET_ACCESS_KEY", ""), args.beaker_workspace)
b.secret.write(
f"{owner}-AWS_CREDENTIALS_FILE",
open(os.path.join(os.path.expanduser("~"), ".aws", "credentials")).read(),
args.beaker_workspace,
)
env_var_secrets = [
EnvVar(name="WEKA_ACCESS_KEY_ID", secret=f"{owner}-WEKA_ACCESS_KEY_ID"),
EnvVar(name="WEKA_SECRET_ACCESS_KEY", secret=f"{owner}-WEKA_SECRET_ACCESS_KEY"),
EnvVar(name="AWS_CREDENTIALS_FILE", secret=f"{owner}-AWS_CREDENTIALS_FILE"),
]
try:
b.secret.get("OLMOCR_PREVIEW_HF_TOKEN", args.beaker_workspace)
env_var_secrets.append(EnvVar(name="HF_TOKEN", secret="OLMOCR_PREVIEW_HF_TOKEN"))
except SecretNotFound:
pass
try:
b.secret.get("OE_DATA_GCS_SA_KEY", args.beaker_workspace)
env_var_secrets.append(EnvVar(name="GOOGLE_APPLICATION_CREDENTIALS_FILE", secret="OE_DATA_GCS_SA_KEY"))
except SecretNotFound:
print("Input the olmo-gcs SA key if you would like to load weights from gcs (end with a double newline):")
lines = []
prev_empty = False
for line in iter(input, None):
if not line and prev_empty:
break
prev_empty = not line
lines.append(line)
gcs_sa_key = "\n".join(lines[:-1]).strip() # Remove the last empty line
if gcs_sa_key:
b.secret.write("OE_DATA_GCS_SA_KEY", gcs_sa_key, args.beaker_workspace)
env_var_secrets.append(EnvVar(name="GOOGLE_APPLICATION_CREDENTIALS_FILE", secret="OE_DATA_GCS_SA_KEY"))
# Create the experiment spec
experiment_spec = ExperimentSpec(
budget="ai2/oe-data",
description=task_name,
tasks=[
TaskSpec(
name=task_name,
propagate_failure=False,
propagate_preemption=False,
replicas=args.beaker_gpus,
context=TaskContext(
priority=Priority(args.beaker_priority),
preemptible=True,
),
image=ImageSource(beaker=beaker_image),
command=["python", "-m", "scripts/tagging_pipeline.py"] + args_list,
env_vars=[EnvVar(name="BEAKER_JOB_NAME", value=task_name), EnvVar(name="OWNER", value=owner)] + env_var_secrets,
resources=TaskResources(gpu_count=1),
constraints=Constraints(cluster=args.beaker_cluster if isinstance(args.beaker_cluster, list) else [args.beaker_cluster]),
result=ResultSpec(path="/noop-results"),
)
],
)
experiment_data = b.experiment.create(spec=experiment_spec, workspace=args.beaker_workspace)
print(f"Experiment URL: https://beaker.org/ex/{experiment_data.id}")
async def main():
parser = argparse.ArgumentParser(description="Tagging pipeline for Dolma JSONL dataset")
parser.add_argument("dataset", help="Dolma dataset root (local or s3://) with documents/ folder")
parser.add_argument("scratch", help="Scratch workspace (local dir or s3://)")
parser.add_argument("--workers", type=int, default=4, help="Number of concurrent workers")
parser.add_argument("--model", default="google/gemma-3-4b-it", help="SGLang model path or name")
# Beaker/job running stuff
parser.add_argument("--beaker", action="store_true", help="Submit this job to beaker instead of running locally")
parser.add_argument("--beaker_workspace", help="Beaker workspace to submit to", default="ai2/olmocr")
parser.add_argument(
"--beaker_cluster",
help="Beaker clusters you want to run on",
default=["ai2/jupiter-cirrascale-2", "ai2/ceres-cirrascale", "ai2/neptune-cirrascale", "ai2/saturn-cirrascale", "ai2/augusta-google-1"],
)
parser.add_argument("--beaker_gpus", type=int, default=1, help="Number of gpu replicas to run")
parser.add_argument("--beaker_priority", type=str, default="normal", help="Beaker priority level for the job")
parser.add_argument("--port", type=int, default=30024, help="Port for SGLang server")
args = parser.parse_args()
global SGLANG_SERVER_PORT, workspace_s3, dataset_s3
SGLANG_SERVER_PORT = args.port
workspace_s3 = boto3.client("s3")
dataset_s3 = boto3.client("s3")
# setup the job to work in beaker environment, load secrets, adjust logging, etc.
if "BEAKER_JOB_NAME" in os.environ:
sglang_logger.addHandler(console_handler)
cred_path = os.path.join(os.path.expanduser("~"), ".aws", "credentials")
os.makedirs(os.path.dirname(cred_path), exist_ok=True)
with open(cred_path, "w") as f:
f.write(os.environ.get("AWS_CREDENTIALS_FILE"))
cred_path = os.path.join(os.path.expanduser("~"), ".gcs", "credentials")
os.makedirs(os.path.dirname(cred_path), exist_ok=True)
with open(cred_path, "w") as f:
f.write(os.environ.get("GOOGLE_APPLICATION_CREDENTIALS_FILE"))
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = cred_path
workspace_s3 = boto3.client("s3")
pdf_s3 = boto3.client("s3")
# Wait a little bit so that not all beaker jobs in a task start at the same time and download the model at the same time
replica_count = int(os.environ.get("BEAKER_REPLICA_COUNT", "1"))
interval = 10 if (replica_count - 1) * 10 <= 240 else 240 / max(1, replica_count - 1)
sleep_time = int(int(os.environ.get("BEAKER_REPLICA_RANK", "0")) * interval)
logger.info(f"Beaker job sleeping for {sleep_time} seconds to stagger model downloads")
await asyncio.sleep(sleep_time)
# Initialize work queue
if args.scratch.startswith("s3://"):
work_queue = S3WorkQueue(workspace_s3, args.scratch)
else:
work_queue = LocalWorkQueue(args.scratch)
# Discover input files
files = set()
if args.dataset.startswith("s3://"):
pattern = args.dataset.rstrip("/") + "/documents/*.jsonl*"
matched = expand_s3_glob(dataset_s3, pattern)
files = set(matched.keys())
else:
docs_dir = os.path.join(args.dataset, "documents")
for root, _, fns in os.walk(docs_dir):
for fn in fns:
if fn.endswith((".jsonl", ".jsonl.gz", ".jsonl.ztd")):
files.add(os.path.join(root, fn))
# Populate the work queue if needed
await work_queue.populate_queue(list(files), items_per_group=1)
if args.beaker:
submit_beaker_job(args)
return
# If you get this far, then you are doing inference and need a GPU
# check_sglang_version()
# check_torch_gpu_available()
logger.info(f"Starting pipeline with PID {os.getpid()}")
# Download the model before you do anything else
model_name_or_path = await download_model(args.model)
# Initialize the work queue
qsize = await work_queue.initialize_queue()
if qsize == 0:
logger.info("No work to do, exiting")
return
# Create a semaphore to control worker access
# We only allow one worker to move forward with requests, until the server has no more requests in its queue
# This lets us get full utilization by having many workers, but also to be outputting dolma docs as soon as possible
# As soon as one worker is no longer saturating the gpu, the next one can start sending requests
semaphore = asyncio.Semaphore(1)
# sglang_server = asyncio.create_task(sglang_server_host(model_name_or_path, args, semaphore))
# await sglang_server_ready()
metrics_task = asyncio.create_task(metrics_reporter(work_queue))
# Create worker tasks to process the queue concurrently.
worker_tasks = []
for i in range(args.workers):
task = asyncio.create_task(worker(args, work_queue, semaphore, worker_id=i))
worker_tasks.append(task)
# Wait for all worker tasks to finish
await asyncio.gather(*worker_tasks)
# Wait for server to stop
process_pool.shutdown(wait=False)
# sglang_server.cancel()
metrics_task.cancel()
logger.info("Work done")
if __name__ == "__main__":
asyncio.run(main())