olmocr/scripts/infinigram_count.py

172 lines
6.9 KiB
Python
Raw Normal View History

2025-02-18 17:14:56 +00:00
#!/usr/bin/env python3
import argparse
import boto3
import json
import random
2025-02-18 17:53:46 +00:00
import re
2025-02-18 17:14:56 +00:00
import requests
import time
2025-02-18 17:53:46 +00:00
from tqdm import tqdm
from transformers import AutoTokenizer
# Allowed characters: alphanumeric, space, and basic punctuation ".,!?()"
ALLOWED_RE = re.compile(r'^[A-Za-z0-9\.,!?() ]+$')
2025-02-18 17:14:56 +00:00
def get_random_line_from_s3(bucket, key):
2025-02-18 17:53:46 +00:00
"""
Reads an S3 object line-by-line and returns a random line using reservoir sampling.
"""
2025-02-18 17:14:56 +00:00
s3 = boto3.client('s3')
response = s3.get_object(Bucket=bucket, Key=key)
random_line = None
count = 0
for line in response['Body'].iter_lines():
if not line:
continue
line_str = line.decode('utf-8')
count += 1
if random.randint(1, count) == 1:
random_line = line_str
return random_line
def query_infinigram(ngram, index="v4_rpj_llama_s4", retries=3):
2025-02-18 17:53:46 +00:00
"""
Sends a count query to the infini-gram API for the given n-gram.
Retries a few times in case of network issues.
"""
2025-02-18 17:14:56 +00:00
url = "https://api.infini-gram.io/"
payload = {
"index": index,
"query_type": "count",
"query": ngram,
}
for i in range(retries):
try:
response = requests.post(url, json=payload, timeout=10)
if response.status_code == 200:
result = response.json()
if "count" in result:
return result["count"]
except Exception as e:
time.sleep(1)
return 0
2025-02-18 17:53:46 +00:00
def process_document(doc, tokenizer, ngram_size, num_samples, index="v4_rpj_llama_s4"):
"""
Tokenizes the document using the Llama2 tokenizer and samples random n-grams.
Each n-gram is chosen such that:
1. It starts on a word-split boundary (using the offset mapping and a check on the preceding character).
2. Its decoded string contains only alphanumeric characters, spaces, and the punctuation marks ".,!?()".
Each valid n-gram is then queried using the infini-gram API.
The function returns the document id, the number of matching n-grams (i.e. API count > 0),
the total number of valid n-grams sampled, and a list of tuples (flag, ngram_string).
"""
2025-02-18 17:14:56 +00:00
text = doc.get("text", "")
doc_id = doc.get("id", "Unknown")
2025-02-18 17:53:46 +00:00
# Get tokenized representation with offset mapping to determine word boundaries.
tokenized = tokenizer(text, add_special_tokens=False, return_offsets_mapping=True)
token_ids = tokenized["input_ids"]
offsets = tokenized["offset_mapping"]
if len(token_ids) < ngram_size:
return doc_id, 0, 0, []
# Determine valid starting indices based on word-split boundaries.
valid_positions = []
2025-02-18 19:01:17 +00:00
# for i in range(len(token_ids) - ngram_size + 1):
# start_offset = offsets[i][0]
# if start_offset == 0 or (start_offset > 0 and text[start_offset - 1] == " "):
# valid_positions.append(i)
2025-02-18 17:53:46 +00:00
if not valid_positions:
# Fallback: if no valid positions are found, use all possible positions.
valid_positions = list(range(len(token_ids) - ngram_size + 1))
valid_ngram_details = []
attempts = 0
max_attempts = num_samples * 10 # Limit to prevent infinite loops.
while len(valid_ngram_details) < num_samples and attempts < max_attempts:
idx = random.choice(valid_positions)
ngram_token_ids = token_ids[idx: idx+ngram_size]
ngram_str = tokenizer.decode(ngram_token_ids, clean_up_tokenization_spaces=True)
# Only accept n-grams that contain only allowed characters.
2025-02-18 19:01:17 +00:00
if ALLOWED_RE.fullmatch(ngram_str) and len(ngram_str.strip()) > ngram_size * 3:
2025-02-18 17:53:46 +00:00
count = query_infinigram(ngram_str, index=index)
flag = "YES" if count > 0 else "NO"
valid_ngram_details.append((flag, ngram_str))
attempts += 1
match_count = sum(1 for flag, _ in valid_ngram_details if flag == "YES")
sample_count = len(valid_ngram_details)
return doc_id, match_count, sample_count, valid_ngram_details
2025-02-18 17:14:56 +00:00
def main():
2025-02-18 17:53:46 +00:00
parser = argparse.ArgumentParser(
description="Infini-gram n-gram matching script with Llama2 tokenization."
)
2025-02-18 17:14:56 +00:00
parser.add_argument("N", type=int, help="Number of random .jsonl files to process")
parser.add_argument("s3_path", type=str, help="S3 path to a prefix containing .jsonl files (e.g., s3://my-bucket/my-prefix/)")
2025-02-18 19:01:17 +00:00
parser.add_argument("--index", type=str, default="v4_dolma-v1_7_llama", help="Infini-gram index to use (default: v4_rpj_llama_s4)")
2025-02-18 17:53:46 +00:00
parser.add_argument("--ngram_size", type=int, default=10, help="Size of the n-gram to sample (default: 10)")
parser.add_argument("--num_ngrams", type=int, default=100, help="Number of random n-grams to sample from each document (default: 100)")
2025-02-18 17:14:56 +00:00
args = parser.parse_args()
if not args.s3_path.startswith("s3://"):
print("Error: s3_path must start with 's3://'")
return
path_without_scheme = args.s3_path[5:]
parts = path_without_scheme.split("/", 1)
bucket = parts[0]
prefix = parts[1] if len(parts) > 1 else ""
2025-02-18 17:53:46 +00:00
print("Listing .jsonl files from S3...")
2025-02-18 17:14:56 +00:00
s3 = boto3.client("s3")
response = s3.list_objects_v2(Bucket=bucket, Prefix=prefix)
files = [obj["Key"] for obj in response.get("Contents", []) if obj["Key"].endswith(".jsonl")]
if not files:
print("No .jsonl files found in the given prefix.")
return
if args.N > len(files):
print(f"Requested {args.N} files, but only found {len(files)}. Processing all available files.")
args.N = len(files)
random_files = random.sample(files, args.N)
2025-02-18 17:53:46 +00:00
print("Loading Llama2 tokenizer...")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
2025-02-18 17:14:56 +00:00
total_matches = 0
2025-02-18 17:53:46 +00:00
total_ngrams_sampled = 0
for key in tqdm(random_files, desc="Processing files"):
2025-02-18 17:14:56 +00:00
line = get_random_line_from_s3(bucket, key)
if not line:
print(f"Skipping {key}: No valid lines found.")
continue
try:
doc = json.loads(line)
except Exception as e:
print(f"Error parsing JSON in {key}: {e}")
continue
2025-02-18 17:53:46 +00:00
doc_id, match_count, sample_count, details = process_document(
doc, tokenizer, args.ngram_size, args.num_ngrams, index=args.index
)
# Print per-document n-gram summary
print(f"\nDocument ID: {doc_id}")
for flag, ngram in details:
# Print the flag in a fixed-width field (4 characters) followed by the n-gram representation.
print(f"{flag:4} {repr(ngram)}")
percentage = (match_count / sample_count * 100) if sample_count else 0
print(f"Matched n-grams: {match_count}/{sample_count} ({percentage:.2f}%)")
2025-02-18 17:14:56 +00:00
total_matches += match_count
2025-02-18 17:53:46 +00:00
total_ngrams_sampled += sample_count
2025-02-18 17:14:56 +00:00
2025-02-18 17:53:46 +00:00
overall_percentage = (total_matches / total_ngrams_sampled * 100) if total_ngrams_sampled else 0
print(f"\nTotal matched n-grams: {total_matches}/{total_ngrams_sampled} ({overall_percentage:.2f}%)")
2025-02-18 17:14:56 +00:00
if __name__ == "__main__":
main()