2024-10-01 19:59:48 +00:00
|
|
|
# This file generates anchor text in a variety of different ways
|
|
|
|
# The goal here is to generate a bit of text which can be used to help prompt a VLM
|
|
|
|
# to better understand a document
|
|
|
|
|
|
|
|
# pdftotext
|
|
|
|
# pdfium
|
|
|
|
# pymupdf
|
|
|
|
# pypdf
|
|
|
|
|
|
|
|
# coherency score best of these three
|
|
|
|
import subprocess
|
2024-10-08 21:23:21 +00:00
|
|
|
import math
|
2024-10-07 17:01:59 +00:00
|
|
|
import ftfy
|
2024-10-01 23:15:53 +00:00
|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import Literal, List
|
2024-10-01 19:59:48 +00:00
|
|
|
|
|
|
|
import pypdfium2 as pdfium
|
|
|
|
import pymupdf
|
|
|
|
|
|
|
|
from pdelfin.filter.coherency import get_document_coherency
|
|
|
|
|
2024-10-01 23:15:53 +00:00
|
|
|
from pypdf import PdfReader
|
|
|
|
from pypdf.generic import RectangleObject
|
|
|
|
from pdelfin.prompts._adv_anchor import mult
|
|
|
|
|
2024-10-01 19:59:48 +00:00
|
|
|
|
2024-10-01 23:15:53 +00:00
|
|
|
def get_anchor_text(local_pdf_path: str, page: int, pdf_engine: Literal["pdftotext", "pdfium", "pymupdf", "pypdf", "topcoherency", "pdfreport"]) -> str:
|
2024-10-01 19:59:48 +00:00
|
|
|
assert page > 0, "Pages are 1-indexed in pdf-land"
|
|
|
|
|
|
|
|
if pdf_engine == "pdftotext":
|
|
|
|
return _get_pdftotext(local_pdf_path, page)
|
|
|
|
elif pdf_engine == "pdfium":
|
|
|
|
return _get_pdfium(local_pdf_path, page)
|
|
|
|
elif pdf_engine == "pypdf":
|
|
|
|
return _get_pypdf_raw(local_pdf_path, page)
|
|
|
|
elif pdf_engine == "pymupdf":
|
|
|
|
return _get_pymupdf(local_pdf_path, page)
|
|
|
|
elif pdf_engine == "topcoherency":
|
2024-10-02 15:53:21 +00:00
|
|
|
options = {
|
|
|
|
"pdftotext": _get_pdftotext(local_pdf_path, page),
|
|
|
|
"pymupdf": _get_pymupdf(local_pdf_path, page),
|
|
|
|
"pdfium": _get_pdfium(local_pdf_path, page),
|
|
|
|
"pypdf_raw": _get_pypdf_raw(local_pdf_path, page)
|
|
|
|
}
|
2024-10-01 19:59:48 +00:00
|
|
|
|
2024-10-02 15:53:21 +00:00
|
|
|
scores = {label: get_document_coherency(text) for label, text in options.items()}
|
2024-10-01 19:59:48 +00:00
|
|
|
|
2024-10-02 15:53:21 +00:00
|
|
|
best_option_label = max(scores, key=scores.get)
|
|
|
|
best_option = options[best_option_label]
|
|
|
|
|
|
|
|
print(f"topcoherency chosen: {best_option_label}")
|
|
|
|
|
|
|
|
return best_option
|
2024-10-01 23:15:53 +00:00
|
|
|
elif pdf_engine == "pdfreport":
|
|
|
|
return _linearize_pdf_report(_pdf_report(local_pdf_path, page))
|
|
|
|
else:
|
|
|
|
raise NotImplementedError("Unknown engine")
|
2024-10-01 19:59:48 +00:00
|
|
|
|
|
|
|
|
|
|
|
def _get_pdftotext(local_pdf_path: str, page: int) -> str:
|
|
|
|
pdftotext_result = subprocess.run(
|
|
|
|
["pdftotext", "-f", str(page), "-l", str(page), local_pdf_path, "-"],
|
|
|
|
timeout=60,
|
|
|
|
stdout=subprocess.PIPE,
|
|
|
|
stderr=subprocess.PIPE,
|
|
|
|
)
|
|
|
|
assert pdftotext_result.returncode == 0
|
|
|
|
return pdftotext_result.stdout.decode("utf-8")
|
|
|
|
|
|
|
|
def _get_pymupdf(local_pdf_path: str, page: int) -> str:
|
|
|
|
pm_doc = pymupdf.open(local_pdf_path)
|
|
|
|
return pm_doc[page - 1].get_text()
|
|
|
|
|
|
|
|
def _get_pypdf_raw(local_pdf_path: str, page: int) -> str:
|
|
|
|
reader = PdfReader(local_pdf_path)
|
|
|
|
pypage = reader.pages[page - 1]
|
|
|
|
|
|
|
|
return pypage.extract_text()
|
|
|
|
|
|
|
|
def _get_pdfium(local_pdf_path: str, page: int) -> str:
|
|
|
|
pdf = pdfium.PdfDocument(local_pdf_path)
|
|
|
|
textpage = pdf[page - 1].get_textpage()
|
2024-10-01 23:15:53 +00:00
|
|
|
return textpage.get_text_bounded()
|
|
|
|
|
|
|
|
def _transform_point(x, y, m):
|
|
|
|
x_new = m[0]*x + m[2]*y + m[4]
|
|
|
|
y_new = m[1]*x + m[3]*y + m[5]
|
|
|
|
return x_new, y_new
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class Element:
|
|
|
|
pass
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class BoundingBox:
|
|
|
|
x0: float
|
|
|
|
y0: float
|
|
|
|
x1: float
|
|
|
|
y1: float
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def from_rectangle(rect: RectangleObject) -> "BoundingBox":
|
|
|
|
return BoundingBox(rect[0], rect[1], rect[2], rect[3])
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class TextElement(Element):
|
|
|
|
text: str
|
|
|
|
x: float
|
|
|
|
y: float
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class ImageElement(Element):
|
|
|
|
name: str
|
|
|
|
bbox: BoundingBox
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class PageReport:
|
|
|
|
mediabox: BoundingBox
|
2024-10-08 21:23:21 +00:00
|
|
|
text_elements: List[TextElement]
|
|
|
|
image_elements: List[ImageElement]
|
2024-10-01 23:15:53 +00:00
|
|
|
|
|
|
|
def _pdf_report(local_pdf_path: str, page: int) -> PageReport:
|
|
|
|
reader = PdfReader(local_pdf_path)
|
|
|
|
page = reader.pages[page - 1]
|
|
|
|
resources = page.get("/Resources", {})
|
|
|
|
xobjects = resources.get("/XObject", {})
|
2024-10-08 21:23:21 +00:00
|
|
|
text_elements, image_elements = [], []
|
|
|
|
|
2024-10-01 23:15:53 +00:00
|
|
|
|
|
|
|
def visitor_body(text, cm, tm, font_dict, font_size):
|
|
|
|
txt2user = mult(tm, cm)
|
2024-10-08 21:23:21 +00:00
|
|
|
text_elements.append(TextElement(text, txt2user[4], txt2user[5]))
|
2024-10-01 23:15:53 +00:00
|
|
|
|
|
|
|
def visitor_op(op, args, cm, tm):
|
|
|
|
if op == b"Do":
|
|
|
|
xobject_name = args[0]
|
|
|
|
xobject = xobjects.get(xobject_name)
|
|
|
|
if xobject and xobject["/Subtype"] == "/Image":
|
|
|
|
# Compute image bbox
|
|
|
|
# The image is placed according to the CTM
|
|
|
|
width = xobject.get("/Width")
|
|
|
|
height = xobject.get("/Height")
|
|
|
|
x0, y0 = _transform_point(0, 0, cm)
|
|
|
|
x1, y1 = _transform_point(1, 1, cm)
|
2024-10-08 21:23:21 +00:00
|
|
|
image_elements.append(ImageElement(xobject_name, BoundingBox(min(x0, x1), min(y0, y1), max(x0, x1), max(y0, y1))))
|
2024-10-01 23:15:53 +00:00
|
|
|
|
|
|
|
page.extract_text(visitor_text=visitor_body, visitor_operand_before=visitor_op)
|
|
|
|
|
|
|
|
return PageReport(
|
|
|
|
mediabox=BoundingBox.from_rectangle(page.mediabox),
|
2024-10-08 21:23:21 +00:00
|
|
|
text_elements=text_elements,
|
|
|
|
image_elements=image_elements,
|
2024-10-01 23:15:53 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
2024-10-08 21:23:21 +00:00
|
|
|
def _merge_image_elements(images: List[ImageElement], tolerance: float=0.5) -> List[ImageElement]:
|
|
|
|
n = len(images)
|
|
|
|
parent = list(range(n)) # Initialize Union-Find parent pointers
|
|
|
|
|
|
|
|
def find(i):
|
|
|
|
# Find with path compression
|
|
|
|
root = i
|
|
|
|
while parent[root] != root:
|
|
|
|
root = parent[root]
|
|
|
|
while parent[i] != i:
|
|
|
|
parent_i = parent[i]
|
|
|
|
parent[i] = root
|
|
|
|
i = parent_i
|
|
|
|
return root
|
|
|
|
|
|
|
|
def union(i, j):
|
|
|
|
# Union by attaching root of one tree to another
|
|
|
|
root_i = find(i)
|
|
|
|
root_j = find(j)
|
|
|
|
if root_i != root_j:
|
|
|
|
parent[root_i] = root_j
|
|
|
|
|
|
|
|
def bboxes_overlap(b1: BoundingBox, b2: BoundingBox, tolerance: float) -> bool:
|
|
|
|
# Compute horizontal and vertical distances between boxes
|
|
|
|
h_dist = max(0, max(b1.x0, b2.x0) - min(b1.x1, b2.x1))
|
|
|
|
v_dist = max(0, max(b1.y0, b2.y0) - min(b1.y1, b2.y1))
|
|
|
|
# Check if distances are within tolerance
|
|
|
|
return h_dist <= tolerance and v_dist <= tolerance
|
|
|
|
|
|
|
|
# Union overlapping images
|
|
|
|
for i in range(n):
|
|
|
|
for j in range(i + 1, n):
|
|
|
|
if bboxes_overlap(images[i].bbox, images[j].bbox, tolerance):
|
|
|
|
union(i, j)
|
|
|
|
|
|
|
|
# Group images by their root parent
|
|
|
|
groups = {}
|
|
|
|
for i in range(n):
|
|
|
|
root = find(i)
|
|
|
|
groups.setdefault(root, []).append(i)
|
|
|
|
|
|
|
|
# Merge images in the same group
|
|
|
|
merged_images = []
|
|
|
|
for indices in groups.values():
|
|
|
|
# Initialize merged bounding box
|
|
|
|
merged_bbox = images[indices[0]].bbox
|
|
|
|
merged_name = images[indices[0]].name
|
|
|
|
|
|
|
|
for idx in indices[1:]:
|
|
|
|
bbox = images[idx].bbox
|
|
|
|
# Expand merged_bbox to include the current bbox
|
|
|
|
merged_bbox = BoundingBox(
|
|
|
|
x0=min(merged_bbox.x0, bbox.x0),
|
|
|
|
y0=min(merged_bbox.y0, bbox.y0),
|
|
|
|
x1=max(merged_bbox.x1, bbox.x1),
|
|
|
|
y1=max(merged_bbox.y1, bbox.y1),
|
|
|
|
)
|
|
|
|
# Optionally, update the name
|
|
|
|
merged_name += f"+{images[idx].name}"
|
|
|
|
|
|
|
|
merged_images.append(ImageElement(name=merged_name, bbox=merged_bbox))
|
|
|
|
|
|
|
|
# Return the merged images along with other elements
|
|
|
|
return merged_images
|
|
|
|
|
|
|
|
|
2024-10-01 23:15:53 +00:00
|
|
|
def _linearize_pdf_report(report: PageReport) -> str:
|
|
|
|
result = ""
|
|
|
|
|
|
|
|
result += f"Page dimensions: {report.mediabox.x1:.1f}x{report.mediabox.y1:.1f}\n"
|
2024-10-08 21:23:21 +00:00
|
|
|
|
|
|
|
#images = report.image_elements
|
|
|
|
images = _merge_image_elements(report.image_elements)
|
|
|
|
|
|
|
|
for index, element in enumerate(images):
|
|
|
|
result += f"[Image {element.bbox.x0:.0f}x{element.bbox.y0:.0f} to {element.bbox.x1:.0f}x{element.bbox.y1:.0f}]"
|
|
|
|
|
|
|
|
for index, element in enumerate(report.text_elements):
|
|
|
|
if len(element.text.strip()) == 0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
element_text = ftfy.fix_text(element.text)
|
|
|
|
# Replace square brackets with something else not to throw off the syntax
|
|
|
|
element_text = element_text.replace("[", "\[").replace("]", "\[")
|
|
|
|
|
|
|
|
# Need to use ftfy to fix text, because occasionally there are invalid surrogate pairs and other UTF issues that cause
|
|
|
|
# pyarrow to fail to load the json later
|
|
|
|
result += f"[{element.x:.0f}x{element.y:.0f}]{element_text}"
|
2024-10-01 19:59:48 +00:00
|
|
|
|
2024-10-01 23:15:53 +00:00
|
|
|
return result
|